Modelling of fall-cone tests with strain-rate effects
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A4 Artikkeli konferenssijulkaisussa
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Date
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
9
Series
Procedia Engineering, Volume 175, pp. 293-301
Abstract
Material Point Method (MPM) is a numerical method, which is well suited for large displacement simulations. Large displacements problems are relatively common in geotechnics, including post-failure behaviour of landslides as well as a wide range of problems involving penetration into the soil body. One of those problems is the fall-cone test, commonly used to establish the undrained shear strength and the sensitivity of saturated fine grained soils. This paper shows a Generalized Interpolation Material Point Method (GIMP) simulation replicating published free-fall cone experiment performed on a kaolin clay. In the fall-cone tests, the penetration characteristics of the cone, such as velocity and total penetration depth depend on the soil properties. Those properties are affected greatly by the strain-rate which must be accounted for in a numerical simulation. Hence, the simulations shown uses a Mohr-Coulomb / Tresca material extended with strain-rate effects. The presented numerical simulations are compared with the published fall-cone experiment in which displacement and force were measured. The comparison indicates that Generalized Interpolation Material Point Method and Mohr-Coulomb / Tresca model extended with strain-rate effects are able to replicate the fall-cone penetration test very well.Description
Other note
Citation
Tran, Q, Sołowski, W T, Karstunen, M & Korkiala-Tanttu, L 2017, 'Modelling of fall-cone tests with strain-rate effects', Procedia Engineering, vol. 175, pp. 293-301. https://doi.org/10.1016/j.proeng.2017.01.029