Automated mineralogy as a novel approach for the compositional and textural characterization of spent lithium-ion batteries
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2021-08-01
Major/Subject
Mcode
Degree programme
Language
en
Pages
14
Series
Minerals Engineering, Volume 169
Abstract
Mechanical recycling processes aim to separate particles based on their physical properties, such as size, shape and density, and physico-chemical surface properties, such as wettability. Secondary materials, including electronic waste, are highly complex and heterogeneous, which complicates recycling processes. In order to improve recycling efficiency, characterization of both recycling process feed materials and intermediate products is crucial. Textural characteristics of particles in waste mixtures cannot be determined by conventional characterization techniques, such as X-ray fluorescence and X-ray diffraction spectroscopy. This paper presents the application of automated mineralogy as an analytical tool, capable of describing discrete particle characteristics for monitoring and diagnosis of lithium ion battery (LIB) recycling approaches. Automated mineralogy, which is well established for the analysis of primary raw materials but has not yet been tested on battery waste, enables the acquisition of textural and chemical information, such as elemental and phase composition, morphology, association and degree of liberation. For this study, a thermo-mechanically processed black mass (<1 mm fraction) from spent LIBs was characterized with automated mineralogy. Each particle was categorized based on which LIB component it comprised: Al foil, Cu foil, graphite, lithium metal oxides and alloys from casing. A more selective liberation of the anode components was achieved by thermo-mechanical treatment, in comparison to the cathode components. Therefore, automated mineralogy can provide vital information for understanding the properties of black mass particles, which determine the success of mechanical recycling processes. The introduced methodology is not limited to the presented case study and is applicable for the optimization of different separation unit operations in recycling of waste electronics and batteries.Description
Funding Information: The authors would like to acknowledge: Marek Dosbaba for the possibility to work with TESCAN; Accurec GmbH for providing the black mass, UVR FIA GmbH for the help with sample splitting and the XRF analysis; From Helmhotz Institute Freiberg: Roland Wuerkert, Michael Stoll and Sebastian Thormeier for the grain mounts preparation; Robert Moeckel and Doreen Ebert for their help with the analytical work. The authors gratefully acknowledge the Helmholtz foundation for base funding within the PoF III (project oriented funding part III) for the BooMeRanG project. Publisher Copyright: © 2021 The Author(s)
Keywords
Automated mineralogy, Black mass, Characterization, Liberation, Lithium-ion batteries, Mineral processing, Recycling
Other note
Citation
Vanderbruggen, A, Gugala, E, Blannin, R, Bachmann, K, Serna-Guerrero, R & Rudolph, M 2021, ' Automated mineralogy as a novel approach for the compositional and textural characterization of spent lithium-ion batteries ', Minerals Engineering, vol. 169, 106924 . https://doi.org/10.1016/j.mineng.2021.106924