Exploiting Battery Storages With Reinforcement Learning: A Review for Energy Professionals

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorSubramanya, Rakshithen_US
dc.contributor.authorSierla, Seppo A.en_US
dc.contributor.authorVyatkin, Valeriyen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorInformation Technologies in Industrial Automationen
dc.contributor.organizationDepartment of Electrical Engineering and Automationen_US
dc.date.accessioned2022-08-10T08:25:02Z
dc.date.available2022-08-10T08:25:02Z
dc.date.issued2022en_US
dc.description.abstractThe transition to renewable production and smart grids is driving a massive investment to battery storages, and reinforcement learning (RL) has recently emerged as a potentially disruptive technology for their control and optimization of battery storage systems. A surge of papers has appeared in the last two years applying reinforcement learning to the optimization of battery storages in buildings, energy communities, energy harvesting Internet of Things networks, renewable generation, microgrids, electric vehicles and plug-in hybrid electric vehicles. This article reviews these applications through 4 different perspectives. Firstly, the type of optimization problem is analyzed; the literature can be divided to approaches that optimize either financial targets or energy efficiency. Secondly, the approaches for handling user comfort are analyzed for applications that may impact a human user. Thirdly, this paper discusses the approach to model and reduce battery degradation. Fourthly, the articles are categorized by application context and applications likely to attract a high amount of research are identified. The paper concludes with a list of unresolved challenges.en
dc.description.versionPeer revieweden
dc.format.extent23
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationSubramanya, R, Sierla, S A & Vyatkin, V 2022, 'Exploiting Battery Storages With Reinforcement Learning: A Review for Energy Professionals', IEEE Access, vol. 10, pp. 54484-54506. https://doi.org/10.1109/ACCESS.2022.3176446en
dc.identifier.doi10.1109/ACCESS.2022.3176446en_US
dc.identifier.issn2169-3536
dc.identifier.otherPURE UUID: b868c8ba-4e02-48ba-9400-606135c10ffden_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/b868c8ba-4e02-48ba-9400-606135c10ffden_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85130436314&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/86045459/Exploiting_Battery_Storages_With_Reinforcement_Learning_A_Review_for_Energy_Professionals.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/115898
dc.identifier.urnURN:NBN:fi:aalto-202208104720
dc.language.isoenen
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Accessen
dc.relation.ispartofseriesVolume 10, pp. 54484-54506en
dc.rightsopenAccessen
dc.subject.keywordBattery degradationen_US
dc.subject.keywordbattery storageen_US
dc.subject.keywordelectric vehicleen_US
dc.subject.keywordmicrogriden_US
dc.subject.keywordreinforcement learningen_US
dc.titleExploiting Battery Storages With Reinforcement Learning: A Review for Energy Professionalsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files