Design of optimal electrolyte circulation based on the kinetic modelling of copper dissolution in silver electrorefining

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorAji, Arifen_US
dc.contributor.authorHamuyuni, Josephen_US
dc.contributor.authorAromaa, Jarien_US
dc.contributor.authorWilson, Benjamin P.en_US
dc.contributor.authorLundström, Marien_US
dc.contributor.departmentDepartment of Chemical and Metallurgical Engineeringen
dc.contributor.groupauthorHydrometallurgy and Corrosionen
dc.date.accessioned2020-07-03T11:07:55Z
dc.date.available2020-07-03T11:07:55Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2022-06-20en_US
dc.date.issued2020-09-01en_US
dc.description.abstractCopper is the major impurity dissolved in silver electrorefining which potentially accumulates in the electrolyte during the process and co-deposits onto the cathode surface, decreasing the product quality. The study investigated the dissolution kinetics of copper in silver electrorefining as a function of wt%Cu in the industrial electrolyte ranges of 40–100 g/dm3 [Ag+], 5–15 g/dm3 [HNO3] and 20–60 g/dm3 [Cu2+] at 25–45 °C. The results showed that Cu dissolved at a higher rate in comparison to silver and that the two kinetic models developed have good accuracy and validity. From the models, optimal electrolyte circulation parameters were simulated to avoid [Cu2+] accumulation in the electrolyte. As a conclusion, processing 1% Cu anodes at the critical [Cu2+]/[Ag+] ratio of 0.8 in the electrolyte requires an inlet of [Ag+] of 2.3–3.3 and tolerates [Cu2+] of 0.14–0.47 times that of the [Ag+] and [Cu2+] in the bulk electrolyte, respectively. Furthermore, electrolyte with higher [Ag+] provides the benefit of reduced electrolyte circulation flowrate and increased tolerance of wt%-Cu in the silver anodes.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationAji, A, Hamuyuni, J, Aromaa, J, Wilson, B P & Lundström, M 2020, ' Design of optimal electrolyte circulation based on the kinetic modelling of copper dissolution in silver electrorefining ', Hydrometallurgy, vol. 196, 105403 . https://doi.org/10.1016/j.hydromet.2020.105403en
dc.identifier.doi10.1016/j.hydromet.2020.105403en_US
dc.identifier.issn0304-386X
dc.identifier.otherPURE UUID: c634177b-c113-4c9d-8ebe-7e33d1e510dden_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/c634177b-c113-4c9d-8ebe-7e33d1e510dden_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85089171853&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/43824472/CHEM_Aji_et_al_Design_of_optimal_electrolyte_Hydrometallurgy.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/45331
dc.identifier.urnURN:NBN:fi:aalto-202007034288
dc.language.isoenen
dc.publisherElsevier Science B.V.
dc.relation.ispartofseriesHydrometallurgyen
dc.relation.ispartofseriesarticlenumber 105403en
dc.rightsopenAccessen
dc.subject.keywordCopper dissolutionen_US
dc.subject.keywordModel-bassed process designen_US
dc.subject.keywordSilver electrorefiningen_US
dc.titleDesign of optimal electrolyte circulation based on the kinetic modelling of copper dissolution in silver electrorefiningen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi

Files