Design of optimal electrolyte circulation based on the kinetic modelling of copper dissolution in silver electrorefining
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Aji, Arif | en_US |
dc.contributor.author | Hamuyuni, Joseph | en_US |
dc.contributor.author | Aromaa, Jari | en_US |
dc.contributor.author | Wilson, Benjamin P. | en_US |
dc.contributor.author | Lundström, Mari | en_US |
dc.contributor.department | Department of Chemical and Metallurgical Engineering | en |
dc.contributor.groupauthor | Hydrometallurgy and Corrosion | en |
dc.date.accessioned | 2020-07-03T11:07:55Z | |
dc.date.available | 2020-07-03T11:07:55Z | |
dc.date.embargo | info:eu-repo/date/embargoEnd/2022-06-20 | en_US |
dc.date.issued | 2020-09-01 | en_US |
dc.description.abstract | Copper is the major impurity dissolved in silver electrorefining which potentially accumulates in the electrolyte during the process and co-deposits onto the cathode surface, decreasing the product quality. The study investigated the dissolution kinetics of copper in silver electrorefining as a function of wt%Cu in the industrial electrolyte ranges of 40–100 g/dm3 [Ag+], 5–15 g/dm3 [HNO3] and 20–60 g/dm3 [Cu2+] at 25–45 °C. The results showed that Cu dissolved at a higher rate in comparison to silver and that the two kinetic models developed have good accuracy and validity. From the models, optimal electrolyte circulation parameters were simulated to avoid [Cu2+] accumulation in the electrolyte. As a conclusion, processing 1% Cu anodes at the critical [Cu2+]/[Ag+] ratio of 0.8 in the electrolyte requires an inlet of [Ag+] of 2.3–3.3 and tolerates [Cu2+] of 0.14–0.47 times that of the [Ag+] and [Cu2+] in the bulk electrolyte, respectively. Furthermore, electrolyte with higher [Ag+] provides the benefit of reduced electrolyte circulation flowrate and increased tolerance of wt%-Cu in the silver anodes. | en |
dc.description.version | Peer reviewed | en |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Aji, A, Hamuyuni, J, Aromaa, J, Wilson, B P & Lundström, M 2020, ' Design of optimal electrolyte circulation based on the kinetic modelling of copper dissolution in silver electrorefining ', Hydrometallurgy, vol. 196, 105403 . https://doi.org/10.1016/j.hydromet.2020.105403 | en |
dc.identifier.doi | 10.1016/j.hydromet.2020.105403 | en_US |
dc.identifier.issn | 0304-386X | |
dc.identifier.other | PURE UUID: c634177b-c113-4c9d-8ebe-7e33d1e510dd | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/c634177b-c113-4c9d-8ebe-7e33d1e510dd | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85089171853&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/43824472/CHEM_Aji_et_al_Design_of_optimal_electrolyte_Hydrometallurgy.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/45331 | |
dc.identifier.urn | URN:NBN:fi:aalto-202007034288 | |
dc.language.iso | en | en |
dc.publisher | Elsevier Science B.V. | |
dc.relation.ispartofseries | Hydrometallurgy | en |
dc.relation.ispartofseries | articlenumber 105403 | en |
dc.rights | openAccess | en |
dc.subject.keyword | Copper dissolution | en_US |
dc.subject.keyword | Model-bassed process design | en_US |
dc.subject.keyword | Silver electrorefining | en_US |
dc.title | Design of optimal electrolyte circulation based on the kinetic modelling of copper dissolution in silver electrorefining | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |