3D-printed sensor electric circuits using atomic layer deposition

Thumbnail Image
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Embargo ends: 2026-03-12

Other link related to publication
Degree programme
Sensors and Actuators A: Physical, Volume 370
3D-printing, also known as additive manufacturing, has enabled the production of dynamically shaped objects often customized for specific applications. Many applications, such as sensors in the aerospace industry, have demanding mass and volume requirements or need to work in challenging environments that necessitate electronics to be protected. The combination of 3D-printing and electronics could open up new applications not feasible previously. We propose a novel manufacturing method capable of integrating a complex electric circuit consisting of several, commonly available electronic components with a 3D-printed object. This is achieved using a commercial printer and atomic layer deposition for coating. Various printable polymers and coatings were tested to identify two polymers that could be printed into one object, allowing selective conductivity when coated with conductive coating. Selective conductivity is achieved when one polymer exhibits poorer and more non-continuous coating growth compared to the other. The 3D-printed object’s three-dimensional shape and details were used to create the electrical circuit and aid in achieving selective conductivity. A demonstration consisting of an ultraviolet light (UV) sensor, based on an existing traditional circuit board, was replicated using this method. The 3D-printed circuit was then tested by comparing its output with that of the original when placed under the same UV-light source. The novel circuit output closely followed the original. The presented method can combine an electric circuit with the dynamic capabilities of a 3D-printer, allowing for savings in existing applications as well as new applications.
3D-printed sensors, Additive manufacturing, Atomic layer deposition, Electric circuit, UV-sensor
Other note
Kestilä, A, Vehkamäki, M, Nyman, L, Salmi, M, Lohilahti, J, Hatanpää, T, Lafont, U & Ritala, M 2024, ' 3D-printed sensor electric circuits using atomic layer deposition ', Sensors and Actuators A: Physical, vol. 370, 115260 . https://doi.org/10.1016/j.sna.2024.115260