Recombination activity of light-activated copper defects in p-type silicon studied by injection- and temperature-dependent lifetime spectroscopy
No Thumbnail Available
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Date
2016-09-26
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
8
Series
Journal of Applied Physics, Volume 120, issue 12
Abstract
The presence of copper contamination is known to cause strong light-induced degradation (Cu-LID) in silicon. In this paper, we parametrize the recombination activity of light-activated copper defects in terms of Shockley—Read—Hall recombination statistics through injection- and temperature dependent lifetime spectroscopy (TDLS) performed on deliberately contaminated float zone silicon wafers. We obtain an accurate fit of the experimental data via two non-interacting energy levels, i.e., a deep recombination center featuring an energy level at Ec−Et=0.48−0.62 eVEc−Et=0.48−0.62 eV with a moderate donor-like capture asymmetry (k=1.7−2.6) k=1.7−2.6) and an additional shallow energy state located at Ec−Et=0.1−0.2 eVEc−Et=0.1−0.2 eV, which mostly affects the carrier lifetime only at high-injection conditions. Besides confirming these defect parameters, TDLS measurements also indicate a power-law temperature dependence of the capture cross sections associated with the deep energy state. Eventually, we compare these results with the available literature data, and we find that the formation of copper precipitates is the probable root cause behind Cu-LID.Description
Keywords
Other note
Citation
Inglese, A, Lindroos, J, Vahlman, H & Savin, H 2016, ' Recombination activity of light-activated copper defects in p-type silicon studied by injection- and temperature-dependent lifetime spectroscopy ', Journal of Applied Physics, vol. 120, no. 12, 125703 . https://doi.org/10.1063/1.4963121