Joint entity and relation extraction via contrastive learning on knowledge-augmented graph embeddings

No Thumbnail Available

URL

Journal Title

Journal ISSN

Volume Title

Perustieteiden korkeakoulu | Master's thesis

Authors

Date

2023-01-23

Department

Major/Subject

Machine Learning, Data Science and Artificial Intelligence

Mcode

SCI3044

Degree programme

Master’s Programme in Computer, Communication and Information Sciences

Language

en

Pages

50+2

Series

Abstract

Entity Recognition (ER) and Relation Extraction (RE) are the two most critical tasks in information extraction. Rather than viewing them as two subtasks, recent studies are focusing on how to extract entities and relationships jointly, which is known as Joint Entity and Relation Extraction (JERE). However, in prior research, the interaction between entity recognition and relation extraction is not explicitly described. Besides, a lack of semantic and structural information leads to poor performance in extraction. These models also hard to handle the problem of entity overlapping, showing limitations of working in complex scenarios. To address these issues, in this work, we introduce the design of knowledge-augmented graph embeddings to enable existing models in capturing more information from the text and achieve a better understanding of the connections between entities and relations. In addition, we employ Contrastive Learning (CL) to encourage adaptive learning from external knowledge. Furthermore, we adopt a novel tagging scheme to transform this task into a triplet classification problem. Experimental results on three widely used datasets show a good performance of our model and illustrate the contributions of different blocks employed in the model.

Description

Supervisor

Marttinen, Pekka

Thesis advisor

Ji, Shaoxiong

Keywords

joint entity relation extraction, graph neural networks, contrastive learning, knowledge graph

Other note

Citation