Event Classification with Imbalanced and Missing Data for an Air-Handling Unit

Loading...
Thumbnail Image

Access rights

openAccess
acceptedVersion

URL

Journal Title

Journal ISSN

Volume Title

A4 Artikkeli konferenssijulkaisussa

Date

2022-08-29

Major/Subject

Mcode

Degree programme

Language

en

Pages

5

Series

2022 IEEE 5th International Conference on Big Data and Artificial Intelligence (BDAI), Volume 5, pp. 82-86

Abstract

Prediction of faults reliably for air handling units (AHU) is a key aspect of correcting errors and eliminating non-optimal functionality. Machine learning classification methods with data sampling are widely utilized to forecast these kinds of events, which, by their nature, seldom occur in equipment. The model proposed in this paper harnesses seven years of data from an air handling unit that contains information about, for example, temperature, humidity, CO2 content, and fan speed. This paper contributes to the field of imbalanced classification problems by proposing a novel data undersampling algorithm to enhance the classification model results in the presence of imbalanced and missing data. Moreover, this paper compares several oversampling methods, undersampling methods, probability calibration, and machine learning methods. Then, the paper reports on the proposed final model (proposed undersampling Algorithm 1, Tomek Links, and Logistic Regression) to forecast imperfect heat recovery events in an air handling unit that occur relatively seldom. The precision of the final model was 0.93 for the unseen data; this result was reasonable considering the imbalance of data concurring with missing data sequences.

Description

Keywords

machine learning, classification algorithms, imbalanced data, data preprocessing

Other note

Citation

Huotari, M & Främling, K 2022, Event Classification with Imbalanced and Missing Data for an Air-Handling Unit . in 2022 IEEE 5th International Conference on Big Data and Artificial Intelligence (BDAI) . vol. 5, IEEE, pp. 82-86, International Conference on Big Data and Artificial Intelligence, Fuzhou, China, 08/07/2022 . https://doi.org/10.1109/BDAI56143.2022.9862614