Event Classification with Imbalanced and Missing Data for an Air-Handling Unit
Loading...
Access rights
openAccess
acceptedVersion
URL
Journal Title
Journal ISSN
Volume Title
A4 Artikkeli konferenssijulkaisussa
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Authors
Date
2022-08-29
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
5
Series
2022 IEEE 5th International Conference on Big Data and Artificial Intelligence (BDAI), Volume 5, pp. 82-86
Abstract
Prediction of faults reliably for air handling units (AHU) is a key aspect of correcting errors and eliminating non-optimal functionality. Machine learning classification methods with data sampling are widely utilized to forecast these kinds of events, which, by their nature, seldom occur in equipment. The model proposed in this paper harnesses seven years of data from an air handling unit that contains information about, for example, temperature, humidity, CO2 content, and fan speed. This paper contributes to the field of imbalanced classification problems by proposing a novel data undersampling algorithm to enhance the classification model results in the presence of imbalanced and missing data. Moreover, this paper compares several oversampling methods, undersampling methods, probability calibration, and machine learning methods. Then, the paper reports on the proposed final model (proposed undersampling Algorithm 1, Tomek Links, and Logistic Regression) to forecast imperfect heat recovery events in an air handling unit that occur relatively seldom. The precision of the final model was 0.93 for the unseen data; this result was reasonable considering the imbalance of data concurring with missing data sequences.Description
Keywords
machine learning, classification algorithms, imbalanced data, data preprocessing
Other note
Citation
Huotari, M & Främling, K 2022, Event Classification with Imbalanced and Missing Data for an Air-Handling Unit . in 2022 IEEE 5th International Conference on Big Data and Artificial Intelligence (BDAI) . vol. 5, IEEE, pp. 82-86, International Conference on Big Data and Artificial Intelligence, Fuzhou, China, 08/07/2022 . https://doi.org/10.1109/BDAI56143.2022.9862614