Featherlight, Mechanically Robust Cellulose Ester Aerogels for Environmental Remediation
Loading...
Access rights
openAccess
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Date
2017-08
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
ACS Omega, Volume 2, issue 8, pp. 4297-4305
Abstract
A unique combination of well-established synthesis procedures involving chemical cross-linking, careful solvent exchange to water, and subsequent freeze drying is used to produce ultralight (4.3 mg/mL) and highly porous (99.7%) cellulose diacetate (CDA) aerogels with honeycomb morphology. This versatile synthesis approach is extended to other nonaqueous polymers with hydroxyl functionalities such as cellulose acetate propionate and cellulose acetate butyrate to produce a single component polymer aerogel. These aerogels demonstrate a maximum water and oil uptake of up to 92 and 112 g/g, respectively. The honeycomb morphology provides a maximum compression strain of 92% without failure and reaches a compressive stress of 350 kPa, for 4 w/v % CDA aerogels (4%), which is higher than that reported for cellulosic aerogels. The 4% CDA aerogel were rendered hydrophobic and oleophilic via chemical vapor deposition with organosilane. The modified CDA aerogel surpasses their counterparts in maintaining their mechanical integrity for fast oil cleanup and efficient oil retention from aqueous media under marine conditions. These aerogels are identified to be reusable and durable for a long period.Description
Keywords
Other note
Citation
Tripathi, A, Parsons, G N, Rojas, O J & Khan, S A 2017, ' Featherlight, Mechanically Robust Cellulose Ester Aerogels for Environmental Remediation ', ACS Omega, vol. 2, no. 8, pp. 4297-4305 . https://doi.org/10.1021/acsomega.7b00571