Efficient CONGEST Algorithms for the Lovasz Local Lemma

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A4 Artikkeli konferenssijulkaisussa

Date

2021

Major/Subject

Mcode

Degree programme

Language

en

Pages

19

Series

35th International Symposium on Distributed Computing, DISC 2021, Leibniz International Proceedings in Informatics, LIPIcs ; Volume 209

Abstract

We present a poly log log n time randomized CONGEST algorithm for a natural class of Lovász Local Lemma (LLL) instances on constant degree graphs. This implies, among other things, that there are no LCL problems with randomized complexity between Ω(log n) and poly log log n. Furthermore, we provide extensions to the network decomposition algorithms given in the recent breakthrough by Rozhoň and Ghaffari [STOC2020] and the follow up by Ghaffari, Grunau, and Rozhoň [SODA2021]. In particular, we show how to obtain a large distance separated weak network decomposition with a negligible dependency on the range of unique identifiers.

Description

| openaire: EC/H2020/755839/EU//BANDWIDTH

Keywords

Other note

Citation

Maus, Y & Uitto, J 2021, Efficient CONGEST Algorithms for the Lovasz Local Lemma . in S Gilbert (ed.), 35th International Symposium on Distributed Computing, DISC 2021 ., 31, Leibniz International Proceedings in Informatics, LIPIcs, vol. 209, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, International Symposium on Distributed Computing, Freiburg, Germany, 04/10/2021 . https://doi.org/10.4230/LIPIcs.DISC.2021.31