Self-assembly of binary solutions to complex structures

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorScacchi, Albertoen_US
dc.contributor.authorSammalkorpi, Mariaen_US
dc.contributor.authorAla-Nissila, Tapioen_US
dc.contributor.departmentDepartment of Chemistry and Materials Scienceen
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.departmentDepartment of Bioproducts and Biosystemsen
dc.contributor.groupauthorSoft Materials Modellingen
dc.contributor.groupauthorCentre of Excellence in Quantum Technology, QTFen
dc.contributor.groupauthorMultiscale Statistical and Quantum Physicsen
dc.date.accessioned2021-08-04T06:41:11Z
dc.date.available2021-08-04T06:41:11Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2022-07-07en_US
dc.date.issued2021-07-07en_US
dc.descriptionFunding Information: This work was supported by the Academy of Finland under Grant Nos. 309324 (M.S.) and 307806 and 312298 (T.A.-N.). T.A.-N. was also supported by a Technology Industries of Finland Centennial Foundation TT2020 grant. We are grateful for support from the FinnCERES Materials Bioeconomy Ecosystem. Computational resources by CSC IT Centre for Finland and RAMI (RawMatters Finland Infrastructure) are also gratefully acknowledged Publisher Copyright: © 2021 Author(s).
dc.description.abstractSelf-assembly in natural and synthetic molecular systems can create complex aggregates or materials whose properties and functionalities rise from their internal structure and molecular arrangement. The key microscopic features that control such assemblies remain poorly understood, nevertheless. Using classical density functional theory, we demonstrate how the intrinsic length scales and their interplay in terms of interspecies molecular interactions can be used to tune soft matter self-assembly. We apply our strategy to two different soft binary mixtures to create guidelines for tuning intermolecular interactions that lead to transitions from a fully miscible, liquid-like uniform state to formation of simple and core-shell aggregates and mixed aggregate structures. Furthermore, we demonstrate how the interspecies interactions and system composition can be used to control concentration gradients of component species within these assemblies. The insight generated by this work contributes toward understanding and controlling soft multi-component self-assembly systems. Additionally, our results aid in understanding complex biological assemblies and their function and provide tools to engineer molecular interactions in order to control polymeric and protein-based materials, pharmaceutical formulations, and nanoparticle assemblies.en
dc.description.versionPeer revieweden
dc.format.extent10
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationScacchi, A, Sammalkorpi, M & Ala-Nissila, T 2021, 'Self-assembly of binary solutions to complex structures', Journal of Chemical Physics, vol. 155, no. 1, 014904. https://doi.org/10.1063/5.0053365en
dc.identifier.doi10.1063/5.0053365en_US
dc.identifier.issn0021-9606
dc.identifier.issn1089-7690
dc.identifier.otherPURE UUID: 6033211d-fac1-4536-a7d5-40ef57a97c57en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/6033211d-fac1-4536-a7d5-40ef57a97c57en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85109208204&partnerID=8YFLogxK
dc.identifier.otherPURE LINK: https://arxiv.org/abs/2103.07321en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/66154909/CHEM_Scacchi_et_al_Self_assembly_of_binary_solutions_2021_The_Journal_of_Chemical_Physics.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/108882
dc.identifier.urnURN:NBN:fi:aalto-202108048126
dc.language.isoenen
dc.publisherAmerican Institute of Physics
dc.relation.ispartofseriesJournal of Chemical Physicsen
dc.relation.ispartofseriesVolume 155, issue 1en
dc.rightsopenAccessen
dc.titleSelf-assembly of binary solutions to complex structuresen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files