On feature selection for electronic mail filtering using self-organizing maps

No Thumbnail Available
Journal Title
Journal ISSN
Volume Title
School of Science | Licentiate thesis
Checking the digitized thesis and permission for publishing
Instructions for the author
Date
2010
Major/Subject
Tietokoneverkot
Mcode
T-110
Degree programme
Language
en
Pages
(11) + 76 s. + liitt.55
Series
Abstract
In this thesis we present a method for efficient feature selection in local filtering of unsolicited bulk e-mail (UBE,commonly called "spam"). We noticed that for some header fields, such as addresses, comparing values of multiple fields with each other provides more information about the message type than using single fields alone; that is, the relations between the fields are more informative than the absolute values. We host a set of UBE indicators based on the test results. However, we noticed that the list of indicators changed slightly both over time and between mailboxes. The conclusion is, therefore, that the feature set should be selected dynamically using an adaptive feature selection method. The validity of the indicator list was tested using a state-of-the-art open source filtering system, SpamAssassin. SpamAssassin system uses both exhaustive heuristics and a Bayesian filter, which is the most widely, used adaptive UBE filtering method. We test the performance of SpamAssassin with and without the feature selection code implementing our indicator set. The results show slight improvement in classification performance when the augmented feature selection code was used. Additionally, we present a novel adaptive filtering method called MailSOM. It is based on the self-organizing map algorithm. We build a feasibility test system and evaluate it with an existing test corpus called SpamBase. The results are then compared to four other commonly used algorithms: Naïve Bayesian, C4.5, Part and k-NearestNeighbours (5NN). MailSOM had significantly better precision than e.g. Naive Bayesian. Taking into account MailSOM's ability to dynamically adapt to the evolution of UBEs, it appears a promising new approach to UBE filtering. The performance of different adaptive methods themselves does not differ greatly. It is agreed in literature and in this thesis that, from the filtering accuracy point of view, the feature selection is now even more important than the filtering method itself. The methods presented in this thesis are thus a step towards better accuracy in UBE filtering.

Tässä työssä esitämme tehokkaan piirrevalintamenetelmän (feature selection method) paikallista roskapostin suodatusta varten. Olemme huomanneet, että eräiden sähköpostin otsikkokenttien, kuten osoitekenttien arvojen keskinäinen vertailu tarjoaa enemmän tietoa viestin luonteesta kuin yksittäisten kenttien arvot. Saamiemme tulosten perusteella esitämme työssä listan roskaposti-indikaattoreita. Huomasimme kuitenkin, että indikaattorilista muuttui hieman ajan ja tutkittavien postilaatikoiden mukaan. Tämän johdosta päätelmä onkin, että piirrejoukko (feature set) on syytä valita dynaamisesti käyttäen adaptiivista piirrevalintamenetelmää. Indikaattorilistan oikeellisuus testattiin parhaalla saatavissa olevalla avoimen lähdekoodin suodatinjärjestelmällä, SpamAssassinilla. Se hyödyntää sekä monipuolista heuristiikkajoukkoa että Bayesialaista algoritmia, joka on yleisimmin käytetty adaptiivinen roskapostisuodatusmenetelmä. Testasimme SpamAssassinin suodatustarkkuutta sekä sellaisenaan että lisättynä indikaattorilistaamme perustuvalla Bayesialisen suotimen piirrevalinnalla. Tuloksissa on nähtävissä lievää parannusta käytettäessä indikaattoreihimme perustuvaa piirrevalintaa. Lisäksi esitämme uuden adaptiivisen suodatusmenetelmän nimeltä MailSOM. Se perustuu itseorganisoituvaan karttaan. Toteutimme koejärjestelmän ja testasimme sitä olemassa olevalla testijoukolla nimeltä SpamBase. Saatuja mittaustuloksia verrattiin neljään muuhun adaptiiviseen menetelmään: Bayesialaiseen, C4.5:een, Part:iin ja k-NearestNeighbour:iin (erityisesti 5NN). MailSOM:n tarkkuus (precision) oli mm Bayesialaista algoritmia parempi. Otettaessa huomioon MailSOM:in kyky dynaamisesti mukautua roskapostien kehitykseen, MailSOM vaikuttaa lupaavalta roskapostisuodatusmenetelmältä. Eri adaptiivisten menetelmien suorituskyky ei enää nykyään eroa paljonkaan toisistaan. Kirjallisuudessa, kuten myös tässä työssä, ollaan varsin vakuuttuneita siitä, että suodatustarkkuuden kannalta piirrevalita on jopa tärkeämpi kuin menetelmä itse. Tässä työssä esitetyt menetelmät ovatkin siten askel roskapostin suodatuksen parempaan tarkkuuteen.
Description
Supervisor
Aura, Tuomas
Keywords
unsolicited bulk e-mail, roskapostisuodatus, adaptive filtering, adaptiivinen suodatus, self organizing maps, itseorganisoituvat kartat, spam filtering, roskaposti
Other note
Citation