Intermolecular self-assembly of dopamine-conjugated carboxymethylcellulose and carbon nanotubes toward supertough filaments and multifunctional wearables

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Major/Subject

Mcode

Degree programme

Language

en

Pages

10

Series

Chemical Engineering Journal, Volume 416

Abstract

The utilization of smart textiles, mainly in the form of yarns and wovens, requires high structural toughness and flexibility. To this end, we introduce a strategy based on the intermolecular self-assembly of dopamine-conjugated carboxymethyl cellulose (DA-CMC) with carbon nanotubes (CNT). Upon coagulation in a nonsolvent, the DA-CMC/CNT suspensions readily form composite filaments by the effects of hydrogen bonding, H-pi, anion-pi, and pi-pi interactions, as demonstrated by molecular dynamic simulation. The DA-CMC/CNT filaments display super-toughness (~76.2 MJ m−3), extensibility (strain to failure of ~14.8% at 90% RH, twice that of dopamine-free analogous systems) and high electrical conductivity. Moreover, the composite filaments form conductive networks that effectively support bending, strain and compression in air or fluid media. As such, they are suitable for application in wearables devices designed for sensing and electrothermal heating. Our proposed, scalable synthesis of multifunctional filaments opens new opportunities given their electroactivity and suitability for human interfacing.

Description

Other note

Citation

Guo, T, Wan, Z, Li, D, Song, J, Rojas, O J & Jin, Y 2021, 'Intermolecular self-assembly of dopamine-conjugated carboxymethylcellulose and carbon nanotubes toward supertough filaments and multifunctional wearables', Chemical Engineering Journal, vol. 416, 128981. https://doi.org/10.1016/j.cej.2021.128981