Laser-Assisted Robotic Roller Forming of Ultrahigh-Strength Steel QP1180 with High Precision

Thumbnail Image
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Degree programme
Materials, Volume 16, issue 3
Laser-assisted forming provides a perfect solution that overcomes the formability of low-ductility materials. In this study, laser-assisted robotic roller forming (LRRF) was applied to bend ultrahigh-strength steel sheet (a quenching and partitioning steel with a strength grade of 1180 MPa), and the effects of laser power density on the bending forces, springback, and bending radius of the final parts were investigated. The results show that LRRF is capable of reducing bending forces by 43%, and a compact profile with high precision (i.e., a springback angle smaller than 1° and a radius-to-thickness ratio of ~1.2) was finally achieved at a laser power density of 10 J/mm2. A higher forming temperature, at which a significant decrease in strength is observed, is responsible for the decrease of forming forces with a laser power density of higher than 7.5 J/mm2; another reason could be the heating-to-austenitization temperature and subsequent forming at a temperature above martensitic-transformation temperature. Forming takes place at a higher temperature with lower stresses, and unloading occurs at a relatively lower temperature with the recovery of Young’s modulus; both facilitate the reduction of springback angles. In addition, the sharp bending radius is considered to be attributed to localized deformation and large plastic strains at the heating area.
Funding Information: This research was funded by Science and Technology Commission of Shanghai Municipality, grant number 21170711200 and General Motors collaborative research project, grant number GAC3599. Funding Information: Yi Liu would like to acknowledge the support from China Scholarship Council (Grant number: 202206260121). Publisher Copyright: © 2023 by the authors.
laser-assisted forming, sharp bending radius, springback, thermo-mechanical model, ultrahigh-strength steels
Other note
Min, J, Wang, J, Lian, J, Liu, Y & Hou, Z 2023, ' Laser-Assisted Robotic Roller Forming of Ultrahigh-Strength Steel QP1180 with High Precision ', Materials, vol. 16, no. 3, 1026 .