A priori and a posteriori error analysis of finite element methods for plate models
No Thumbnail Available
URL
Journal Title
Journal ISSN
Volume Title
Doctoral thesis (article-based)
Checking the digitized thesis and permission for publishing
Instructions for the author
Instructions for the author
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Authors
Date
2007-11-09
Major/Subject
Mcode
Degree programme
Language
en
Pages
27, [app]
Series
Research reports / Helsinki University of Technology, Institute of Mathematics. A, 534
Abstract
The focus of this dissertation is in the theoretical and computational analysis of the discretization error indused by finite element methods for plate problems. For the Reissner–Mindlin plate model, regularity results with respect to the loading and a priori convergence estimates for the MITC finite elements are presented. The convergence results are valid uniformly with respect to the thickness parameter. In addition, we prove a local superconvergence result for the deflection approximation of MITC elements, and introduce a postprocessing method improving the accuracy of the approximation. The convergence results are confirmed by numerical computations. For the Kirchhoff–Love plate model, a new family of C0-continuous, optimally convergent finite elements is introduced. Furthermore, we derive a reliable and efficient a posteriori error indicator and verify the results by benchmark computations. Another a posteriori error analysis is performed for the Morley plate element.Väitöskirjassa analysoidaan sekä teoreettisesti että laskennallisesti laattamalleille kehiteltyjen elementtimenetelmien diskretointivirhettä. Reissner–Mindlin-laattamallille esitetään kuormituksen suhteen lausuttuja säännöllisyystuloksia ja MITC-laattaelementtien a priori -virhearvioita. Suppenemistulokset ovat voimassa laatan paksuusparametrin suhteen tasaisesti. Lisäksi MITC-elementtien taipuma-approksimaatiolle todistetaan lokaali superkonvergenssitulos ja esitetään approksimaation tarkkuutta parantava jälkikäsittelymenetelmä. Suppenemistulokset vahvistetaan numeerisilla esimerkeillä. Kirchhoff–Love-laattamallille esitetään uusi C0-jatkuva, optimaalisesti suppeneva elementtiperhe. Näille elementeille johdetaan luotettava ja tehokas a posteriori -virheindikaattori ja tulokset verifioidaan numeerisesti. Lisäksi suoritetaan a posteriori -virheanalyysi Morleyn laattaelementille.Description
Keywords
finite elements, a priori error analysis, a posteriori error analysis, plate models, MITC-elements, adaptivity, elementtimenetelmä, a priori -virheanalyysi, a posteriori -virheanalyysi, laattamallit, MITC-elementit, adaptiivisuus
Other note
Parts
- Mikko Lyly, Jarkko Niiranen, Rolf Stenberg. A refined error analysis of MITC plate elements. Mathematical Models and Methods in Applied Sciences, 16 (2006), 967-977.
- Mikko Lyly, Jarkko Niiranen, Rolf Stenberg. Superconvergence and postprocessing of MITC plate elements. Computer Methods in Applied Mechanics and Engineering, 196 (2007), 3110-3126.
- Lourenço Beirão da Veiga, Jarkko Niiranen, Rolf Stenberg. A family of C0 finite elements for Kirchhoff plates I: Error analysis. SIAM Journal on Numerical Analysis, 45 (2007), 2047-2071. [article3.pdf] © 2007 Society for Industrial and Applied Mathematics (SIAM). By permission.
- Lourenço Beirão da Veiga, Jarkko Niiranen, Rolf Stenberg. A family of C0 finite elements for Kirchhoff plates II: Numerical results. Helsinki University of Technology, Institute of Mathematics, Research Reports, A526 (2007), 29 pages. Computer Methods in Applied Mechanics and Engineering, accepted for publication. [article4.pdf] © 2007 by authors and © 2007 Elsevier Science. By permission.
- Lourenço Beirão da Veiga, Jarkko Niiranen, Rolf Stenberg. A posteriori error estimates for the Morley plate bending element. Numerische Mathematik, 106 (2007), 165-179. [article5.pdf] © 2007 Springer Science+Business Media. By permission.