Adsorption structures of phenol on the Si(001)-(2×1) surface calculated using density functional theory

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2010-06-21

Major/Subject

Mcode

Degree programme

Language

en

Pages

9
1-9

Series

PHYSICAL REVIEW B, Volume 81, issue 23

Abstract

Several dissociated and two nondissociated adsorption structures of the phenol molecule on the Si(001)−(2×1) surface are studied using density functional theory with various exchange and correlation functionals. The relaxed structures and adsorption energies are obtained and it is found that the dissociated structures are energetically more favorable than the nondissociated structures. However, the ground state energies alone do not determine which structure is obtained experimentally. To elucidate the situation core level shift spectra for Si 2p and C 1s states are simulated and compared with experimentally measured spectra. Several transition barriers were calculated in order to determine, which adsorption structures are kinetically accessible. Based on these results we conclude that the molecule undergoes the dissociation of two hydrogen atoms on adsorption.

Description

Keywords

core level binding energy shifts, phenol adsorption, van der Waals functional

Other note

Citation

Johnston , K , Gulans , A , Verho , T & Puska , M J 2010 , ' Adsorption structures of phenol on the Si(001)-(2×1) surface calculated using density functional theory ' , Physical Review B , vol. 81 , no. 23 , 235428 , pp. 1-9 . https://doi.org/10.1103/PhysRevB.81.235428