Precipitation enhancement in stratocumulus clouds through airborne seeding: sensitivity analysis by UCLALES–SALSA

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Major/Subject

Mcode

Degree programme

Language

en

Pages

14

Series

Atmospheric Chemistry and Physics, Volume 21, issue 2, pp. 1035-1048

Abstract

Artificial enhancement of precipitation via hygroscopic cloud seeding is investigated with a numerical large-eddy simulation model coupled with a spectral aerosol-cloud microphysics module. We focus our investigation on marine stratocumulus clouds and evaluate our model results by comparing them with recently published results from field observations. Creating multiple realizations of a single cloud event with the model provides a robust method to detect and attribute the seeding effects, which reinforces the analysis based on experimental data. Owing to the detailed representation of aerosol-cloud interactions, our model successfully reproduces the microphysical signatures attributed to the seeding, that were also seen in the observations. Moreover, the model simulations show up to a 2–3 fold increase in the precipitation flux due to the seeding, depending on the seeding rate and injection strategy. However, our simulations suggest that a relatively high seeding particle emission rate is needed for a substantial increase in the precipitation yield, as compared with the estimated seeding concentrations from the field campaign. In practical applications, the seeding aerosol is often produced by flare burning. It is speculated, that the required amount of large seeding particles suggested by our results could pose a technical challenge to the flare-based approach.

Description

| openaire: EC/H2020/646857/EU//ECLAIR acp-2019-1167

Keywords

Other note

Citation

Tonttila, J, Afzalifar, A, Kokkola, H, Raatikainen, T, Korhonen, H & Romakkaniemi, S 2021, 'Precipitation enhancement in stratocumulus clouds through airborne seeding: sensitivity analysis by UCLALES–SALSA', Atmospheric Chemistry and Physics, vol. 21, no. 2, pp. 1035-1048. https://doi.org/10.5194/acp-21-1035-2021