Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2019-09-13

Major/Subject

Mcode

Degree programme

Language

en

Pages

Series

Science Advances, Volume 5, issue 9

Abstract

Silk and cellulose are biopolymers that show strong potential as future sustainable materials. They also have complementary properties, suitable for combination in composite materials where cellulose would form the reinforcing component and silk the tough matrix. A major challenge concerns balancing structure and functional properties in the assembly process. We used recombinant proteins with triblock architecture, combining structurally modified spider silk with terminal cellulose affinity modules. Flow alignment of cellulose nanofibrils and triblock protein allowed continuous fiber production. Protein assembly involved phase separation into concentrated coacervates, with subsequent conformational switching from disordered structures into b sheets. This process gave the matrix a tough adhesiveness, forming a new composite material with high strength and stiffness combined with increased toughness. We show that versatile design possibilities in protein engineering enable new fully biological materials and emphasize the key role of controlled assembly at multiple length scales for realization.

Description

Keywords

Other note

Citation

Mohammadi, P, Sesilja Aranko, A, Landowski, C P, Ikkala, O, Jaudzems, K, Wagermaier, W & Linder, M B 2019, ' Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements ', Science Advances, vol. 5, no. 9, eaaw2541 . https://doi.org/10.1126/sciadv.aaw2541