UFace: An Unsupervised Deep Learning Face Verification System

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorSolomon, Enochen_US
dc.contributor.authorZewoudie, Abrahamen_US
dc.contributor.authorCios, Krzysztof J.en_US
dc.contributor.departmentDepartment of Signal Processing and Acousticsen
dc.contributor.groupauthorSpeech Interaction Technologyen
dc.contributor.organizationVirginia Commonwealth Universityen_US
dc.contributor.organizationUniversity of Information Technology & Management Rzeszowen_US
dc.date.accessioned2023-02-01T09:12:03Z
dc.date.available2023-02-01T09:12:03Z
dc.date.issued2022-12en_US
dc.description.abstractDeep convolutional neural networks are often used for image verification but require large amounts of labeled training data, which are not always available. To address this problem, an unsupervised deep learning face verification system, called UFace, is proposed here. It starts by selecting from large unlabeled data the k most similar and k most dissimilar images to a given face image and uses them for training. UFace is implemented using methods of the autoencoder and Siamese network; the latter is used in all comparisons as its performance is better. Unlike in typical deep neural network training, UFace computes the loss function k times for similar images and k times for dissimilar images for each input image. UFace's performance is evaluated using four benchmark face verification datasets: Labeled Faces in the Wild (LFW), YouTube Faces (YTF), Cross-age LFW (CALFW) and Celebrities in Frontal Profile in the Wild (CFP-FP). UFace with the Siamese network achieved accuracies of 99.40%, 96.04%, 95.12% and 97.89%, respectively, on the four datasets. These results are comparable with the state-of-the-art methods, such as ArcFace, GroupFace and MegaFace. The biggest advantage of UFace is that it uses much less training data and does not require labeled data.en
dc.description.versionPeer revieweden
dc.format.extent17
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationSolomon, E, Zewoudie, A & Cios, K J 2022, 'UFace : An Unsupervised Deep Learning Face Verification System', Electronics, vol. 11, no. 23, 3909. https://doi.org/10.3390/electronics11233909en
dc.identifier.doi10.3390/electronics11233909en_US
dc.identifier.issn2079-9292
dc.identifier.otherPURE UUID: ac5fe128-8d68-49a3-8b3c-a657f6adf2dben_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/ac5fe128-8d68-49a3-8b3c-a657f6adf2dben_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/99346037/electronics_11_03909_v2.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/119558
dc.identifier.urnURN:NBN:fi:aalto-202302011908
dc.language.isoenen
dc.publisherMDPI AG
dc.relation.ispartofseriesElectronicsen
dc.relation.ispartofseriesVolume 11, issue 23en
dc.rightsopenAccessen
dc.subject.keywordunsupervised face verificationen_US
dc.subject.keyworddeep learningen_US
dc.subject.keywordSiamese networken_US
dc.subject.keywordRECOGNITIONen_US
dc.subject.keywordNETWORKen_US
dc.titleUFace: An Unsupervised Deep Learning Face Verification Systemen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi

Files