UFace
Loading...
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
View publication in the Research portal
View/Open full text file from the Research portal
Date
2022-12
Major/Subject
Mcode
Degree programme
Language
en
Pages
17
Series
Electronics, Volume 11, issue 23
Abstract
Deep convolutional neural networks are often used for image verification but require large amounts of labeled training data, which are not always available. To address this problem, an unsupervised deep learning face verification system, called UFace, is proposed here. It starts by selecting from large unlabeled data the k most similar and k most dissimilar images to a given face image and uses them for training. UFace is implemented using methods of the autoencoder and Siamese network; the latter is used in all comparisons as its performance is better. Unlike in typical deep neural network training, UFace computes the loss function k times for similar images and k times for dissimilar images for each input image. UFace's performance is evaluated using four benchmark face verification datasets: Labeled Faces in the Wild (LFW), YouTube Faces (YTF), Cross-age LFW (CALFW) and Celebrities in Frontal Profile in the Wild (CFP-FP). UFace with the Siamese network achieved accuracies of 99.40%, 96.04%, 95.12% and 97.89%, respectively, on the four datasets. These results are comparable with the state-of-the-art methods, such as ArcFace, GroupFace and MegaFace. The biggest advantage of UFace is that it uses much less training data and does not require labeled data.Description
Keywords
unsupervised face verification, deep learning, Siamese network, RECOGNITION, NETWORK
Citation
Solomon , E , Zewoudie , A & Cios , K J 2022 , ' UFace : An Unsupervised Deep Learning Face Verification System ' , Electronics , vol. 11 , no. 23 , 3909 . https://doi.org/10.3390/electronics11233909