An 18–28 GHz dual-mode down-converter IC for 5G applications

dc.contributorAalto Universityen
dc.contributor.authorNaghavi, Saeeden_US
dc.contributor.authorRyynänen, Kaisaen_US
dc.contributor.authorZahra, Mahwishen_US
dc.contributor.authorKorsman, Aleksien_US
dc.contributor.authorStadius, Karien_US
dc.contributor.authorKosunen, Markoen_US
dc.contributor.authorUnnikrishnan, Vishnuen_US
dc.contributor.authorAnttila, Laurien_US
dc.contributor.authorValkama, Mikkoen_US
dc.contributor.authorRyynänen, Jussien_US
dc.contributor.departmentDepartment of Electronics and Nanoengineeringen
dc.contributor.groupauthorJussi Ryynänen Groupen
dc.contributor.organizationDepartment of Electronics and Nanoengineeringen_US
dc.contributor.organizationTampere Universityen_US
dc.descriptionPublisher Copyright: © 2024, The Author(s).
dc.description.abstractEmerging spectrum trends require a higher integration of 5G New Radio Frequency Range 1 (FR1) and Frequency Range 2 (FR2) bands to enhance the availability of spectrum and spectrum-sharing opportunities. To enable the reception of both FR1 and FR2 bands in a seamless hardware entity, we propose combining homodyne and heterodyne architectures. This necessitates the incorporation of a down-converter module that transfers the incoming signals from FR2 bands down to FR1, ensuring compatibility with an FR1 direct-conversion receiver (DCR) for the final signal reception. The primary focus of this paper is the design and implementation of the required integrated down-converter. The module includes an integrated balun, a low-noise amplifier (LNA) with a bypass mode, a dual-mode mixer, and an intermediate frequency (IF) amplifier. The introduced bypass mode helps to further elevate the linearity performance compared to the nominal mode. The bypass mode is designed for joint communication and sensing operation to avoid the compression of the receiver. This work also incorporates a local oscillator (LO) signal distribution network with phase tuning elements using a mixed-signal approach. The circuit is implemented in a 22-nm CMOS process, and the active die area is 0.6 mm 2 . The measurements demonstrate that the implemented chip can efficiently perform the required frequency conversion over a wide frequency range of 18–28 GHz. Conversion gain of 4.5–7.5 dB, noise figure of 15–19.7 dB, 1 dB compression point (IP1dB) of − 16 to − 10 dBm, and input third-order intercept point (IIP3) of − 5 to 0 dBm are achieved. The measured IP1 dB and IIP3 for the bypass mode are +0.5 to +4.5 dBm and +8.5 to +10 dBm, respectively.en
dc.description.versionPeer revieweden
dc.identifier.citationNaghavi, S, Ryynänen, K, Zahra, M, Korsman, A, Stadius, K, Kosunen, M, Unnikrishnan, V, Anttila, L, Valkama, M & Ryynänen, J 2024, ' An 18–28 GHz dual-mode down-converter IC for 5G applications ', Analog Integrated Circuits and Signal Processing, vol. 118, no. 2, pp. 187-197 .
dc.identifier.otherPURE UUID: e14fdf35-7867-4cd6-94e0-614ebbbe2403en_US
dc.identifier.otherPURE ITEMURL:
dc.identifier.otherPURE LINK:
dc.identifier.otherPURE FILEURL:
dc.relation.ispartofseriesAnalog Integrated Circuits and Signal Processingen
dc.subject.keywordFrequency converteren_US
dc.subject.keywordJoint communication and sensingen_US
dc.subject.keywordMillimeter waveen_US
dc.subject.keywordModular receiveren_US
dc.subject.keywordNew radio (NR)en_US
dc.titleAn 18–28 GHz dual-mode down-converter IC for 5G applicationsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi