Functional fibres by Wet-spinning of Bio-based Colloids

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorBorghei, Maryam, Dr., Aalto University, Finland
dc.contributor.advisorAgo, Mariko, Dr., Meisei University, Japan
dc.contributor.advisorRojas, Orlando, Prof., Aalto University, Finland
dc.contributor.authorWang, Ling
dc.contributor.departmentBiotuotteiden ja biotekniikan laitosfi
dc.contributor.departmentDepartment of Bioproducts and Biosystemsen
dc.contributor.labGroup of Biobased Colloids and Materials (BiCMat)en
dc.contributor.schoolKemian tekniikan korkeakoulufi
dc.contributor.schoolSchool of Chemical Engineeringen
dc.contributor.supervisorRojas, Orlando, Prof., Aalto University, Department of Bioproducts and Biosystems, Finland
dc.date.accessioned2020-09-29T09:00:05Z
dc.date.available2020-09-29T09:00:05Z
dc.date.defence2020-10-22
dc.date.issued2020
dc.description.abstractChitin nanofibrils (ChNF), TEMPO-oxidized cellulose nanofibrils (TOCNF), lignocellulose nanofibrils (LCNF), and lignin were isolated from marine and plant biomass. Microfibres were synthesized by wet spinning of aqueous suspensions of the respective bio-based colloid. The influence of coagulant type in wet spinning as well as the properties of the microfibers obtained from TOCNF and ChNF were studied. In general, fibres coagulated via ion exchange demonstrated better mechanical properties and water/moisture stability. Meanwhile, a clear difference was found in thermal properties: TOCNF microfibres coagulated in aqueous electrolyte presented better thermal stability compared to those coagulated in organic solvents. All the TOCNF and ChNF microfibres were biocompatible as shown by in vitro tests, which indicate prospective applications in the biomedical fields. Lignin-based fibres were manufactured from either LCNF or aqueous lignin suspensions in the presence of TOCNF. An increased lignin loading resulted in microfibres of lower mechanical strength and better thermostability. Carbon microfibres were obtained by one-step carbonization. The higher lignin content in the precursor led to carbon microfibres at higher mass yields and displaying smoother surfaces and higher electroconductivity. The measured electroconductivity (up to 103 S/cm) make them suitable for microelectrodes and wearable electronics. Moreover, the carbon microfibres developed from LCNF suspensions were demonstrated in uses as fibre-shaped supercapacitors, which showed a promising performance. A prototype system for continuous wet-spinning was developed to increase the spinning rate and to optimize the process. This work highlights the use of renewable bioresources in the production of microfibers with no need for molecular dissolution. Thus, the wet-spinning technique is shown as a feasible and versatile approach to produce microfibres, furthering their potential in functional materials. Biobased colloids are suitable alternatives for adoption in fibre production, replacing petroleum-based precursors and opening new opportunities for green processing.en
dc.format.extent53 + app. 87
dc.format.mimetypeapplication/pdfen
dc.identifier.isbn978-952-64-0063-1 (electronic)
dc.identifier.isbn978-952-64-0062-4 (printed)
dc.identifier.issn1799-4942 (electronic)
dc.identifier.issn1799-4934 (printed)
dc.identifier.issn1799-4934 (ISSN-L)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/46753
dc.identifier.urnURN:ISBN:978-952-64-0063-1
dc.language.isoenen
dc.opnYan, Ning, Prof., University of Toronto, Canada
dc.publisherAalto Universityen
dc.publisherAalto-yliopistofi
dc.relation.haspart[Publication 1]: Wang L., Ezazi N.Z., Liu, L., Ajdary R., Xiang W.C., Borghei M., Papageorgiou C.A., Santos H.A., Rojas O.J.; 2020. Microfibers synthesized by wet-spinning of chitin nanomaterials: mechanical, structural and cell proliferation properties. RSC Advances 10, 29450-29459. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-201905062725. DOI: 10.1039/d0ra06178f
dc.relation.haspart[Publication 2]: Wang L., Lundahl M.J., Greca L.G., Papageorgiou A.C., Borghei M., Rojas, O.J; 2019. Effects of non-solvents and electrolytes on the formation and properties of cellulose I filaments. Scientific Reports 9, 1–11. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202001021377.DOI: 10.1038/s41598-019-53215-0
dc.relation.haspart[Publication 3]: Wang L., Ago M., Borghei M., Ishaq A., Papageorgiou A.C., Lundahl M.J., Rojas, O.J.; 2019. Conductive carbon microfibres derived from wet-spun lignin/nanocellulose hydrogels. ACS Sustainable Chemistry & Engineering 7, 6013−6022. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-201905062725. DOI: 10.1021/acssuschemeng.8b06081
dc.relation.haspart[Publication 4]: Wang L., Borghei M., Ishfaq A., Lahtinen P., Ago M., Papageorgiou A.C., Lundahl J.M., Johansson L.S., Kallio T., Rojas O.J.; 2020. Mesoporous carbon microfibres for electroactive materials derived from lignocellulose nanofibrils. ACS Sustainable Chemistry & Engineering 8, 8549−8561. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202008214794. DOI: 10.1021/acssuschemeng.0c00764
dc.relation.ispartofseriesAalto University publication series DOCTORAL DISSERTATIONSen
dc.relation.ispartofseries149/2020
dc.revFatehi, Pedram, Prof., Lakehead University, Canada
dc.revFreire, Carmen S.R., Prof., University of Aveiro, Portugal
dc.subject.keywordmicrofibresen
dc.subject.keywordspinningen
dc.subject.keywordcellulose nanofibrilsen
dc.subject.keywordligninen
dc.subject.keywordlignocelluloseen
dc.subject.keywordchitin nanofibrilsen
dc.subject.otherBiotechnologyen
dc.subject.otherChemistryen
dc.titleFunctional fibres by Wet-spinning of Bio-based Colloidsen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotDoctoral dissertation (article-based)en
dc.type.ontasotVäitöskirja (artikkeli)fi
local.aalto.acrisexportstatuschecked 2020-11-17_2019
local.aalto.archiveyes
local.aalto.formfolder2020_09_28_klo_15_21
local.aalto.infraOtaNano
local.aalto.infraOtaNano - Nanomicroscopy Center

Files

Original bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
isbn9789526400631.pdf
Size:
10.9 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Errata_page.pdf
Size:
124.58 KB
Format:
Adobe Portable Document Format
Description:
errata page