A Perspective on the Glass Transition and the Dynamics of Polyelectrolyte Multilayers and Complexes

Loading...
Thumbnail Image

Access rights

openAccess
acceptedVersion

URL

Journal Title

Journal ISSN

Volume Title

A2 Katsausartikkeli tieteellisessä aikakauslehdessä

Authors

Li, Hongwei
Lalwani, Suvesh Manoj
Eneh, Chikaodinaka I.
Braide, Tamunoemi
Batys, Piotr
Sammalkorpi, Maria
Lutkenhaus, Jodie L.

Major/Subject

Mcode

Degree programme

Language

en

Pages

17

Series

Langmuir, Volume 39, issue 42, pp. 14823-14839

Abstract

Polyelectrolyte multilayers (PEMs) or polyelectrolyte complexes (PECs), formed by layer-by-layer assembly or the mixing of oppositely charged polyelectrolytes (PEs) in aqueous solution, respectively, have potential applications in health, energy, and the environment. PEMs and PECs are very tunable because their structure and properties are influenced by factors such as pH, ionic strength, salt type, humidity, and temperature. Therefore, it is increasingly important to understand how these factors affect PECs and PEMs on a molecular level. In this Feature Article, we summarize our contributions to the field in the development of approaches to quantify the swelling, thermal properties, and dynamic mechanical properties of PEMs and PECs. First, the role of water as a plasticizer and in the glass-transition temperature (Tg) in both strong poly(diallyldimethylammonium)/poly(sodium 4-styrenesulfonate) (PDADMA/PSS) and weak poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) systems is presented. Then, factors influencing the dynamics of PECs and PEMs are discussed. We also reflect on the swelling of PEMs in response to different salts and solvent additives. Last, the nature of water’s microenvironment in PEMs/PECs is discussed. A special emphasis is placed on experimental techniques, along with molecular simulations. Taken together, this review presents an outlook and offers recommendations for future research directions, such as studying the additional effects of hydrogen-bonding hydrophobic interactions.

Description

Keywords

Other note

Citation

Li, H, Lalwani, S M, Eneh, C I, Braide, T, Batys, P, Sammalkorpi, M & Lutkenhaus, J L 2023, 'A Perspective on the Glass Transition and the Dynamics of Polyelectrolyte Multilayers and Complexes', Langmuir, vol. 39, no. 42, pp. 14823-14839. https://doi.org/10.1021/acs.langmuir.3c00974