MNEflow: Neural networks for EEG/MEG decoding and interpretation

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorZubarev, Ivanen_US
dc.contributor.authorVranou, Gavrielaen_US
dc.contributor.authorParkkonen, Laurien_US
dc.contributor.departmentDepartment of Neuroscience and Biomedical Engineeringen
dc.contributor.organizationDepartment of Neuroscience and Biomedical Engineeringen_US
dc.date.accessioned2022-01-12T07:17:43Z
dc.date.available2022-01-12T07:17:43Z
dc.date.issued2022-01en_US
dc.description| openaire: EC/H2020/678578/EU//HRMEG
dc.description.abstractMNEflow is a Python package for applying deep neural networks to multichannel electroencephalograpic (EEG) and magnetoencephalographic (MEG) measurements. This software comprises Tensorflow-based implementations of several popular convolutional neural network (CNN) models for EEG–MEG data and introduces a flexible pipeline enabling easy application of the most common preprocessing, validation, and model interpretation approaches. The software aims to save time and computational resources required for applying neural networks to the analysis of EEG and MEG data.en
dc.description.versionPeer revieweden
dc.format.extent5
dc.format.extent1-5
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationZubarev, I, Vranou, G & Parkkonen, L 2022, ' MNEflow: Neural networks for EEG/MEG decoding and interpretation ', SoftwareX, vol. 17, 100951, pp. 1-5 . https://doi.org/10.1016/j.softx.2021.100951en
dc.identifier.doi10.1016/j.softx.2021.100951en_US
dc.identifier.issn2352-7110
dc.identifier.otherPURE UUID: 388a2cc8-24b8-42b9-845f-09ac8f1de34ben_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/388a2cc8-24b8-42b9-845f-09ac8f1de34ben_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85121965776&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/78005441/MNEflow_Neural_networks_for_EEG_MEG_decoding_and_interpretation.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/112248
dc.identifier.urnURN:NBN:fi:aalto-202201121156
dc.language.isoenen
dc.publisherElsevier
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/678578/EU//HRMEGen_US
dc.relation.ispartofseriesSoftwareXen
dc.relation.ispartofseriesVolume 17en
dc.rightsopenAccessen
dc.subject.keywordElectroencephalographyen_US
dc.subject.keywordMachine learningen_US
dc.subject.keywordMagnetoencephalographyen_US
dc.subject.keywordNeural networksen_US
dc.subject.keywordTensorflowen_US
dc.titleMNEflow: Neural networks for EEG/MEG decoding and interpretationen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files