Suppressing Multi-Channel Ultra-Low-Field MRI Measurement Noise Using Data Consistency and Image Sparsity

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2013

Department

Major/Subject

Mcode

Degree programme

Language

en

Pages

1-6

Series

PLOS ONE, Volume 8, issue 4

Abstract

Ultra-low-field (ULF) MRI (B0 = 10–100 µT) typically suffers from a low signal-to-noise ratio (SNR). While SNR can be improved by pre-polarization and signal detection using highly sensitive superconducting quantum interference device (SQUID) sensors, we propose to use the inter-dependency of the k-space data from highly parallel detection with up to tens of sensors readily available in the ULF MRI in order to suppress the noise. Furthermore, the prior information that an image can be sparsely represented can be integrated with this data consistency constraint to further improve the SNR. Simulations and experimental data using 47 SQUID sensors demonstrate the effectiveness of this data consistency constraint and sparsity prior in ULF-MRI reconstruction.

Description

Keywords

Other note

Citation

Lin , F-H , Vesanen , P T , Hsu , Y-C , Nieminen , J O , Zevenhoven , K C J , Dabek , J , Parkkonen , L T , Simola , J , Ahonen , A I & Ilmoniemi , R J 2013 , ' Suppressing Multi-Channel Ultra-Low-Field MRI Measurement Noise Using Data Consistency and Image Sparsity ' , PloS one , vol. 8 , no. 4 , e61652 , pp. 1-6 . https://doi.org/10.1371/journal.pone.0061652