DIVERSE: Bayesian Data IntegratiVE learning for precise drug ResponSE prediction

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorGuvencpaltun, Betulen_US
dc.contributor.authorKaski, Samuelen_US
dc.contributor.authorMamitsuka, Hiroshien_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.groupauthorProfessorship Kaski Samuelen
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML)en
dc.contributor.groupauthorFinnish Center for Artificial Intelligence, FCAIen
dc.date.accessioned2021-03-31T06:17:37Z
dc.date.available2021-03-31T06:17:37Z
dc.date.issued2022-04-11en_US
dc.descriptionPublisher Copyright: IEEE Copyright: Copyright 2021 Elsevier B.V., All rights reserved. Tallennetaan OA-artikkeli, kun julkaistu (artikkeli avattu takautuvasti) / KS
dc.description.abstractDetecting predictive biomarkers from multi-omics data is important for precision medicine, to improve diagnostics of complex diseases and for better treatments. This needs substantial experimental efforts that are made difficult by the heterogeneity of cell lines and huge cost. An effective solution is to build a computational model over the diverse omics data, including genomic, molecular, and environmental information. However, choosing informative and reliable data sources from among the different types of data is a challenging problem. We propose DIVERSE, a framework of Bayesian importance-weighted tri- and bi-matrix factorization(DIVERSE3 or DIVERSE2) to predict drug responses from data of cell lines, drugs, and gene interactions. DIVERSE integrates the data sources systematically, in a step-wise manner, examining the importance of each added data set in turn. More specifically, we sequentially integrate five different data sets, which have not all been combined in earlier bioinformatic methods for predicting drug responses. Empirical experiments show that DIVERSE clearly outperformed five other methods including three state-of-the-art approaches, under cross-validation, particularly in out-of-matrix prediction, which is closer to the setting of real use cases and more challenging than simpler in-matrix prediction. Additionally, case studies for discovering new drugs further confirmed the performance advantage of DIVERSE.en
dc.description.versionPeer revieweden
dc.format.extent11
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationGuvencpaltun, B, Kaski, S & Mamitsuka, H 2022, ' DIVERSE: Bayesian Data IntegratiVE learning for precise drug ResponSE prediction ', IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 19, no. 4, pp. 2197-2207 . https://doi.org/10.1109/TCBB.2021.3065535en
dc.identifier.doi10.1109/TCBB.2021.3065535en_US
dc.identifier.issn1557-9964
dc.identifier.otherPURE UUID: cb3ba6be-241c-47ea-be0b-71faa06cfebeen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/cb3ba6be-241c-47ea-be0b-71faa06cfebeen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85102676795&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/93601687/DIVERSE_Bayesian_Data_IntegratiVE_Learning_for_Precise_Drug_ResponSE_Prediction.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/103481
dc.identifier.urnURN:NBN:fi:aalto-202103312754
dc.language.isoenen
dc.publisherIEEE
dc.relation.ispartofseriesIEEE/ACM Transactions on Computational Biology and Bioinformaticsen
dc.relation.ispartofseriesVolume 19, issue 4, pp. 2197-2207en
dc.rightsopenAccessen
dc.subject.keywordBayes methodsen_US
dc.subject.keywordBayesian methodsen_US
dc.subject.keywordBioinformaticsen_US
dc.subject.keywordCanceren_US
dc.subject.keywordChemicalsen_US
dc.subject.keyworddata integrationen_US
dc.subject.keywordData modelsen_US
dc.subject.keyworddrug response predictionen_US
dc.subject.keywordDrugsen_US
dc.subject.keywordmachine learningen_US
dc.subject.keywordPersonalized medicineen_US
dc.subject.keywordProteinsen_US
dc.titleDIVERSE: Bayesian Data IntegratiVE learning for precise drug ResponSE predictionen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files