Explaining crowdworker behaviour through computational rationality

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHedderich, Michael A.en_US
dc.contributor.authorOulasvirta, Anttien_US
dc.contributor.departmentDepartment of Communications and Networkingen
dc.contributor.departmentDepartment of Information and Communications Engineeringen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.groupauthorUser Interfacesen
dc.date.accessioned2024-05-15T07:54:12Z
dc.date.available2024-05-15T07:54:12Z
dc.date.issued2024-04-24en_US
dc.descriptionPublisher Copyright: © 2024 Informa UK Limited, trading as Taylor & Francis Group.
dc.description.abstractCrowdsourcing has transformed whole industries by enabling the collection of human input at scale. Attracting high quality responses remains a challenge, however. Several factors affect which tasks a crowdworker chooses, how carefully they respond, and whether they cheat. In this work, we integrate many such factors into a simulation model of crowdworker behaviour rooted in the theory of computational rationality. The root assumption is that crowdworkers are rational and choose to behave in a way that maximises their expected subjective payoffs. The model captures two levels of decisions: (i) a worker's choice among multiple tasks and (ii) how much effort to put into a task. We formulate the worker's decision problem and use deep reinforcement learning to predict worker behaviour in realistic crowdworking scenarios. We examine predictions against empirical findings on the effects of task design and show that the model successfully predicts adaptive worker behaviour with regard to different aspects of task participation, cheating, and task-switching. To support explaining crowdworker actions and other choice behaviour, we make our model publicly available.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationHedderich, M A & Oulasvirta, A 2024, 'Explaining crowdworker behaviour through computational rationality', BEHAVIOUR AND INFORMATION TECHNOLOGY. https://doi.org/10.1080/0144929X.2024.2329616en
dc.identifier.doi10.1080/0144929X.2024.2329616en_US
dc.identifier.issn0144-929X
dc.identifier.issn1362-3001
dc.identifier.otherPURE UUID: 8b361d73-c0d7-4da4-8391-2a5370e5aee0en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/8b361d73-c0d7-4da4-8391-2a5370e5aee0en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85191075598&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/146078163/Explaining_crowdworker_behaviour_through_computational_rationality.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/127750
dc.identifier.urnURN:NBN:fi:aalto-202405153364
dc.language.isoenen
dc.publisherTaylor & Francis
dc.relation.ispartofseriesBEHAVIOUR AND INFORMATION TECHNOLOGYen
dc.rightsopenAccessen
dc.subject.keywordcomputational modellingen_US
dc.subject.keywordCrowdworkeren_US
dc.subject.keywordrational adaptationen_US
dc.subject.keywordreinforcement learningen_US
dc.titleExplaining crowdworker behaviour through computational rationalityen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files