Understanding the chemistry during the preparation of Pd/SSZ-13 for the low-temperature NO adsorption: The role of NH4-SSZ-13 support
Loading...
Access rights
openAccess
acceptedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
8
Series
Applied Catalysis B: Environmental, Volume 282
Abstract
The chemistry during the preparation of Pd/SSZ-13, including impregnation and calcination process, was investigated, using Pd(NO3)2 as precursor and NH4-SSZ-13 as the support. Special attention was paid on analyzing the improvement effect of NH4-SSZ-13 support on Pd2+ ions dispersion. The Pd(NO3)2 precursor remained intact after impregnation and transformed to Pd(NH3)x2+ during calcination at 200−290 °C, and then converted to Pd2+ ions occupying the ion-exchange sites by oxidizing the NH3 ligands to N2 at 290−450 °C. The formation of Pd(NH3)x2+ intermediates is a critical factor for achieving high Pd2+ dispersion, probably due to the fact that NH3 ligands give the intermediates high mobility, facilitating their movement to the ion-exchange sites. The PdO formation might be related to the excessive reduction of Pd2+ sites to metallic Pd, when catalyzing the oxidation of NH3 ligands and the NH4+ on the Brønsted acid sites.Description
Other note
Citation
Zhao, H, Chen, X, Bhat, A, Li, Y & Schwank, J W 2021, 'Understanding the chemistry during the preparation of Pd/SSZ-13 for the low-temperature NO adsorption: The role of NH4-SSZ-13 support', Applied Catalysis B: Environmental, vol. 282, 119611. https://doi.org/10.1016/j.apcatb.2020.119611