Probing the local response of a two-dimensional liquid foam
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2019-02-01
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
1-6
Series
European Physical Journal B, Volume 92, issue 2
Abstract
Aqueous foams are viscoelastic yield stress fluids. Due to their complex rheology, foam flow around an obstacle embedded in a 2D Hele-Shaw cell has been widely studied. Typically, in such geometry in the moving flow reference frame the flow field of viscoelastic fluids exhibit a quadrupolar structure characterized by a negative wake. Here, we introduce a measuring geometry, new in this context, whereby instead of flowing the foam around the obstacle, we move the obstacle as an intruder inside the foam. The proposed setup makes it possible to independently control the driving velocity and the liquid foam properties, such as the gas fraction and polydispersity. We show that the liquid foam velocity field around the intruder is similar to the one observed in viscoelastic fluids, in particular the emergence of a negative wake, e.g. a velocity overshoot downstream side of the obstacle. However, surprisingly, the intensity of this velocity overshoot decreases with the number of intruder passes, probably related to the evolution of the local disordered structure of the liquid foam.Description
Keywords
Other note
Citation
Viitanen, L, Koivisto, J, Puisto, A, Alava, M & Santucci, S 2019, ' Probing the local response of a two-dimensional liquid foam ', European Physical Journal B, vol. 92, no. 2, 38, pp. 1-6 . https://doi.org/10.1140/epjb/e2019-90402-x