Analyzing the gas temperature of a hydrogen jet fire in a compartment with the Fire Dynamics Simulator

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLiu, Wenqianen_US
dc.contributor.authorMarkert, Franken_US
dc.contributor.authorGiuliani, Luisaen_US
dc.contributor.authorHostikka, Simoen_US
dc.contributor.departmentDepartment of Civil Engineeringen
dc.contributor.groupauthorPerformance in Building Design and Constructionen
dc.contributor.organizationTechnical University of Denmarken_US
dc.date.accessioned2024-01-04T09:14:55Z
dc.date.available2024-01-04T09:14:55Z
dc.date.issued2024-01-31en_US
dc.descriptionFunding Information: The authors gratefully acknowledge the financial support provided by the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Hy-tunnel CS Project [grant numbers 826193 ]. The authors gratefully acknowledge the support from the European Union's Horizon 2020 Research and Innovation program , Hydrogen Europe and Hydrogen Europe Research, the Finnish Fire Protection Fund ( Palosuojelurahasto ) [grant numbers VN/14165/2021 ], the Nordic Five Tech Alliance , as well as Otto Mønsteds Fond. Publisher Copyright: © 2023 The Authors
dc.description.abstractThis study presents a method to simulate hydrogen jet fire using the Fire Dynamics Simulator (FDS). To avoid modeling an actual nozzle, high-speed Lagrangian particles released from a virtual nozzle are introduced to simulate released hydrogen. The capability of this FDS model to predict gas temperature is validated by comparing simulation results with five existing experiments in a rectangular steel compartment with an open end. The effects of relevant parameters prescribed in the FDS model on the gas temperature are also analyzed, including numerical parameters (auto-ignition exclusion zone, offset, particle count, and grid) and physical parameters (particle velocity, spray angle, and auto-ignition temperature). The results show that gas temperatures near the nozzle are sensitive to these parameters. Based on the grey relational analysis, the auto-ignition temperature is the least important parameter to predict gas temperatures, while the grid is the most significant parameter for gas temperatures near the ceiling.en
dc.description.versionPeer revieweden
dc.format.extent10
dc.format.extent1097-1106
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLiu, W, Markert, F, Giuliani, L & Hostikka, S 2024, ' Analyzing the gas temperature of a hydrogen jet fire in a compartment with the Fire Dynamics Simulator ', International Journal of Hydrogen Energy, vol. 53, pp. 1097-1106 . https://doi.org/10.1016/j.ijhydene.2023.11.306en
dc.identifier.doi10.1016/j.ijhydene.2023.11.306en_US
dc.identifier.issn0360-3199
dc.identifier.issn1879-3487
dc.identifier.otherPURE UUID: d92accfa-fa1e-4860-9e81-8cb3f5b10570en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/d92accfa-fa1e-4860-9e81-8cb3f5b10570en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85179065067&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/132099116/1-s2.0-S0360319923061451-main-1.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/125546
dc.identifier.urnURN:NBN:fi:aalto-202401041235
dc.language.isoenen
dc.publisherElsevier Ltd
dc.relation.ispartofseriesInternational Journal of Hydrogen Energyen
dc.relation.ispartofseriesVolume 53en
dc.rightsopenAccessen
dc.subject.keywordFluid Dynamic Simulatoren_US
dc.subject.keywordGas temperatureen_US
dc.subject.keywordHydrogen jet fireen_US
dc.subject.keywordLagrangian particlesen_US
dc.subject.keywordSensitivity analysisen_US
dc.titleAnalyzing the gas temperature of a hydrogen jet fire in a compartment with the Fire Dynamics Simulatoren
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion
Files