A Meta-Bayesian Approach for Rapid Online Parametric Optimization for Wrist-based Interactions
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A4 Artikkeli konferenssijulkaisussa
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2024-05-11
Major/Subject
Mcode
Degree programme
Language
en
Pages
38
Series
Abstract
Wrist-based input often requires tuning parameter settings in correspondence to between-user and between-session differences, such as variations in hand anatomy, wearing position, posture, etc. Traditionally, users either work with predefined parameter values not optimized for individuals or undergo time-consuming calibration processes. We propose an online Bayesian Optimization (BO)-based method for rapidly determining the user-specific optimal settings of wrist-based pointing. Specifically, we develop a meta-Bayesian optimization (meta-BO) method, differing from traditional human-in-the-loop BO: By incorporating meta-learning of prior optimization data from a user population with BO, meta-BO enables rapid calibration of parameters for new users with a handful of trials. We evaluate our method with two representative and distinct wrist-based interactions: absolute and relative pointing. On a weighted-sum metric that consists of completion time, aiming error, and trajectory quality, meta-BO improves absolute pointing performance by 22.92% and 21.35% compared to BO and manual calibration, and improves relative pointing performance by 25.43% and 13.60%.Description
Keywords
meta-learning, target selection, wrist-based interaction, human-in-the-loop optimization, meta-Bayesian optimization, Bayesian optimization, adaptive interface, calibration
Other note
Citation
Liao, Y-C, Desai, R, Pierce, A M, Taylor, K E, Benko, H, Jonker, T R & Gupta, A 2024, A Meta-Bayesian Approach for Rapid Online Parametric Optimization for Wrist-based Interactions . in F F Mueller, P Kyburz, J R Williamson, C Sas, M L Wilson, P Toups Dugas & I Shklovski (eds), CHI '24: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems ., 410, ACM, ACM SIGCHI Annual Conference on Human Factors in Computing Systems, Honolulu, Hawaii, United States, 11/05/2024 . https://doi.org/10.1145/3613904.3642071