Linked Science Enablement via Semantic Interoperability and Spatial Data Mining

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorKauppinen, Tomien_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.editorCurdt, Constanzeen_US
dc.contributor.editorWillmes, Christianen_US
dc.contributor.groupauthorProfessorship Malmi L.en
dc.date.accessioned2018-02-09T10:00:39Z
dc.date.available2018-02-09T10:00:39Z
dc.date.issued2015en_US
dc.description.abstractWe are now witnessing a large-scale need for the use of spatial information. Examples range from monitoring of deforestation in the Amazon to everyday applications for navigation and map-based visualizations. However, the central theories for Geographic Information Science (GIScience) need to be developed further in order to support the range of useful applications of geographic information in the society. For this there is a need to understand whether the study of scientific assets and their spatial, temporal and thematic could help to reveal useful new theories. The task is to all of these assets like publications, scientific data, methods, tools or tutorials – and represent their links to each other and to space, time and themes. The core question thus is: can we interconnect all scientific assets? This calls for efficient methods to answer questions of where, when, what, who (and even why) about each asset. Linked Data provides means for both the representation and accessing of data about the scientific assets on the web. This way it becomes possible – likely for the first time – to study on a large scale what kind of stories the data about scientific assets has to tell. Spatial data mining together with ontological reasoning can help us make aggregations, visualizations, abstractions, and thus allow for exploration of massive collections of scientific data and related assets. If we achieve in interconnecting different assets then we can achieve Linked Science where not only different assets are connected but also different disciplines. In this paper we discuss the role spatial data mining, semantic interoperability, vocabularies and visualization to support enabling of Linked Science. We also provide examples from our different Linked Science projects to illustrate the ideas.en
dc.description.versionPeer revieweden
dc.format.extent7
dc.format.extent31-37
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationKauppinen, T 2015, Linked Science Enablement via Semantic Interoperability and Spatial Data Mining . in C Curdt & C Willmes (eds), Proceedings of the 2nd Data Management Workshop . Kölner Geographische Arbeiten, vol. 96, Universität zu Köln, pp. 31-37, Data Management Workshop, Cologne, Germany, 28/11/2014 . https://doi.org/10.5880/TR32DB.KGA96.6en
dc.identifier.doi10.5880/TR32DB.KGA96.6en_US
dc.identifier.issn0454-1294
dc.identifier.otherPURE UUID: 814be219-2c12-46bc-a73e-a73cc30e6fe1en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/814be219-2c12-46bc-a73e-a73cc30e6fe1en_US
dc.identifier.otherPURE LINK: http://www.tr32db.uni-koeln.de/search/view.php?dataID=1531en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/17123011/Kauppinen_2016_KGA96_1.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/29886
dc.identifier.urnURN:NBN:fi:aalto-201802091382
dc.language.isoenen
dc.publisherGeographisches Institut der Universität zu Köln
dc.relation.ispartofData Management Workshopen
dc.relation.ispartofseriesProceedings of the 2nd Data Management Workshopen
dc.relation.ispartofseriesKölner Geographische Arbeitenen
dc.relation.ispartofseriesVolume 96en
dc.rightsopenAccessen
dc.subject.keywordData Managementen_US
dc.subject.keywordResearch Dataen_US
dc.subject.keywordLinked Scienceen_US
dc.subject.keywordSpatial Data Miningen_US
dc.subject.keywordOntological Reasoningen_US
dc.subject.keywordInformation Visualizationen_US
dc.titleLinked Science Enablement via Semantic Interoperability and Spatial Data Miningen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files