LightGBM-Based Fault Diagnosis of Rotating Machinery Under Changing Working Conditions Using Modified Recursive Feature Elimination

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorSaberi, Alireza Nematen_US
dc.contributor.authorBelahcen, Anouaren_US
dc.contributor.authorSobra, Janen_US
dc.contributor.authorVaimann, Toomasen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorComputational Electromechanicsen
dc.contributor.organizationUniversity of West Bohemiaen_US
dc.contributor.organizationTallinn University of Technologyen_US
dc.date.accessioned2022-08-24T07:46:27Z
dc.date.available2022-08-24T07:46:27Z
dc.date.issued2022en_US
dc.descriptionPublisher Copyright: Author
dc.description.abstractThis article presents an intelligent and accurate framework for fault diagnosis of induction motors using light gradient boosting machine (LightGBM). The proposed framework offers promising generalization ability when the testing data contains new unseen operating conditions unavailable during the training process. After the acquisition of vibration signals and feature extraction in multiple domains, we perform an iterative feature selection (FS) approach by utilizing a modified version of recursive feature elimination (RFE) and the features&#x2019; importance scores obtained by LightGBM. To prevent overfitting and subsequent selection bias, an outer resampling loop encompasses the whole process of our RFE-LightGBM algorithm. Moreover, instead of the conventional resampling methods based on K-fold cross-validation (CV) or leave-one-out CV (LOOCV), we use a new scheme called leave-one-loading-out CV (<italic>LOLO-CV</italic>). Leveraging <italic>LOLO-CV</italic>, the proposed FS method identifies the optimal feature subset, making the fault diagnosis robust under changing operating conditions. Then, the final classification is performed with optimal feature subset by training a new LightGBM model with adjusted hyperparameters employing Bayesian optimization. Experimental results from two real case studies show that our proposed fault diagnosis framework achieves accuracies between 98.55% and 100% for various testing scenarios. For example, for the worst-case testing scenario in the bearing dataset of Case Western Reserve University where the no-load data (0hp) is absent during the training process and is only used for testing, the testing accuracy of LightGBM classifier before and after applying the proposed RFE-LightGBM-FS method is 88.04% to 97.23%, respectively. Using the Bayesian hyperparameter optimization further improves the accuracy to 98.55%.en
dc.description.versionPeer revieweden
dc.format.extent16
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationSaberi, A N, Belahcen, A, Sobra, J & Vaimann, T 2022, ' LightGBM-Based Fault Diagnosis of Rotating Machinery Under Changing Working Conditions Using Modified Recursive Feature Elimination ', IEEE Access, vol. 10, pp. 81910-81925 . https://doi.org/10.1109/ACCESS.2022.3195939en
dc.identifier.doi10.1109/ACCESS.2022.3195939en_US
dc.identifier.issn2169-3536
dc.identifier.otherPURE UUID: 7f17cc43-a8fd-4521-94f9-636e6557c292en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/7f17cc43-a8fd-4521-94f9-636e6557c292en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85135766938&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/87131118/LightGBM_Based_Fault_Diagnosis_of_Rotating_Machinery_Under_Changing_Working_Conditions_Using_Modified_Recursive_Feature_Elimination.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/116182
dc.identifier.urnURN:NBN:fi:aalto-202208244997
dc.language.isoenen
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Accessen
dc.relation.ispartofseriesVolume 10, pp. 81910-81925en
dc.rightsopenAccessen
dc.subject.keywordbearingsen_US
dc.subject.keywordDecision treesen_US
dc.subject.keywordElectrical machinesen_US
dc.subject.keywordEmployee welfareen_US
dc.subject.keywordFault diagnosisen_US
dc.subject.keywordfault diagnosisen_US
dc.subject.keywordFeature extractionen_US
dc.subject.keywordfeature importanceen_US
dc.subject.keywordgradient boostingen_US
dc.subject.keywordhyperparameter optimizationen_US
dc.subject.keywordLightGBMen_US
dc.subject.keywordLoadingen_US
dc.subject.keywordmachine learningen_US
dc.subject.keywordTestingen_US
dc.subject.keywordTrainingen_US
dc.titleLightGBM-Based Fault Diagnosis of Rotating Machinery Under Changing Working Conditions Using Modified Recursive Feature Eliminationen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files