Computing of neuromorphic materials : an emerging approach for bioengineering solutions

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorPrakash, Chander
dc.contributor.authorGupta, Lovi Raj
dc.contributor.authorMehta, Amrinder
dc.contributor.authorVasudev, Hitesh
dc.contributor.authorTominov, Roman
dc.contributor.authorKorman, Ekaterina
dc.contributor.authorFedotov, Alexander
dc.contributor.authorSmirnov, Vladimir
dc.contributor.authorKesari, Kavindra Kumar
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.organizationLovely Professional University
dc.contributor.organizationSouthern Federal University
dc.date.accessioned2024-01-04T09:20:46Z
dc.date.available2024-01-04T09:20:46Z
dc.date.issued2023-10-18
dc.descriptionFunding Information: The reported study was funded by the Russian Federation Government (Agreement No. 075-15-2022-1123). Publisher Copyright: © 2023 RSC.
dc.description.abstractThe potential of neuromorphic computing to bring about revolutionary advancements in multiple disciplines, such as artificial intelligence (AI), robotics, neurology, and cognitive science, is well recognised. This paper presents a comprehensive survey of current advancements in the use of machine learning techniques for the logical development of neuromorphic materials for engineering solutions. The amalgamation of neuromorphic technology and material design possesses the potential to fundamentally revolutionise the procedure of material exploration, optimise material architectures at the atomic or molecular level, foster self-adaptive materials, augment energy efficiency, and enhance the efficacy of brain-machine interfaces (BMIs). Consequently, it has the potential to bring about a paradigm shift in various sectors and generate innovative prospects within the fields of material science and engineering. The objective of this study is to advance the field of artificial intelligence (AI) by creating hardware for neural networks that is energy-efficient. Additionally, the research attempts to improve neuron models, learning algorithms, and learning rules. The ultimate goal is to bring about a transformative impact on AI and better the overall efficiency of computer systems.en
dc.description.versionPeer revieweden
dc.format.extent38
dc.format.mimetypeapplication/pdf
dc.identifier.citationPrakash, C, Gupta, L R, Mehta, A, Vasudev, H, Tominov, R, Korman, E, Fedotov, A, Smirnov, V & Kesari, K K 2023, 'Computing of neuromorphic materials : an emerging approach for bioengineering solutions', Materials Advances, vol. 4, no. 23, pp. 5882-5919. https://doi.org/10.1039/d3ma00449jen
dc.identifier.doi10.1039/d3ma00449j
dc.identifier.issn2633-5409
dc.identifier.otherPURE UUID: f678eade-5a72-45a3-a8f3-366dcf7b8fec
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/f678eade-5a72-45a3-a8f3-366dcf7b8fec
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85176222873&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/131078362/Computing_of_neuromorphic_materials.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/125582
dc.identifier.urnURN:NBN:fi:aalto-202401041271
dc.language.isoenen
dc.publisherRoyal Society of Chemistry
dc.relation.ispartofseriesMaterials Advancesen
dc.relation.ispartofseriesVolume 4, issue 23, pp. 5882-5919en
dc.rightsopenAccessen
dc.titleComputing of neuromorphic materials : an emerging approach for bioengineering solutionsen
dc.typeA2 Katsausartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files