Finding Path Motifs in Large Temporal Graphs Using Algebraic Fingerprints

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorThejaswi, Suhasen_US
dc.contributor.authorGionis, Aristidesen_US
dc.contributor.authorLauri, Juhoen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorAdj. Prof. Gionis Aris groupen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.date.accessioned2020-11-30T08:16:18Z
dc.date.available2020-11-30T08:16:18Z
dc.date.issued2020-10-01en_US
dc.description| openaire: EC/H2020/871042/EU//SoBigData-PlusPlus
dc.description.abstractWe study a family of pattern-detection problems in vertex-colored temporal graphs. In particular, given a vertex-colored temporal graph and a multiset of colors as a query, we search for temporal paths in the graph that contain the colors specified in the query. These types of problems have several applications, for example, in recommending tours for tourists or detecting abnormal behavior in a network of financial transactions. For the family of pattern-detection problems we consider, we establish complexity results and design an algebraic-algorithmic framework based on constrained multilinear sieving. We demonstrate that our solution scales to massive graphs with up to a billion edges for a multiset query with 5 colors and up to 100 million edges for a multiset query with 10 colors, despite the problems being non-deterministic polynomial time-hard. Our implementation, which is publicly available, exhibits practical edge-linear scalability and is highly optimized. For instance, in a real-world graph dataset with >6 million edges and a multiset query with 10 colors, we can extract an optimal solution in <8 minutes on a Haswell desktop with four cores.en
dc.description.versionPeer revieweden
dc.format.extent28
dc.format.extent335-362
dc.identifier.citationThejaswi, S, Gionis, A & Lauri, J 2020, ' Finding Path Motifs in Large Temporal Graphs Using Algebraic Fingerprints ', Big Data, vol. 8, no. 5, pp. 335-362 . https://doi.org/10.1089/big.2020.0078en
dc.identifier.doi10.1089/big.2020.0078en_US
dc.identifier.issn2167-6461
dc.identifier.issn2167-647X
dc.identifier.otherPURE UUID: 81de9efb-3a62-45c3-8c09-03d480f60aefen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/81de9efb-3a62-45c3-8c09-03d480f60aefen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85094219675&partnerID=8YFLogxKen_US
dc.identifier.otherPURE LINK: https://arxiv.org/abs/2001.07158en_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/61741
dc.identifier.urnURN:NBN:fi:aalto-2020113020586
dc.language.isoenen
dc.publisherMary Ann Liebert Inc.
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/871042/EU//SoBigData-PlusPlusen_US
dc.relation.ispartofseriesBig Dataen
dc.relation.ispartofseriesVolume 8, issue 5en
dc.rightsopenAccessen
dc.subject.keywordalgebraic algorithmsen_US
dc.subject.keywordconstrained multilinear sievingen_US
dc.subject.keywordpattern detectionen_US
dc.subject.keywordtemporal pathsen_US
dc.subject.keywordtemporal patternsen_US
dc.titleFinding Path Motifs in Large Temporal Graphs Using Algebraic Fingerprintsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi

Files