Predicting the properties of liquid energy carriers using machine learning tools

No Thumbnail Available

URL

Journal Title

Journal ISSN

Volume Title

Insinööritieteiden korkeakoulu | Bachelor's thesis
Electronic archive copy is available locally at the Harald Herlin Learning Centre. The staff of Aalto University has access to the electronic bachelor's theses by logging into Aaltodoc with their personal Aalto user ID. Read more about the availability of the bachelor's theses.

Date

2021-05-01

Department

Major/Subject

Energia- ja ympäristötekniikka

Mcode

ENG3042

Degree programme

Insinööritieteiden kandidaattiohjelma

Language

en

Pages

28

Series

Description

Supervisor

Alanne, Kari

Thesis advisor

Toldy, Arpad

Keywords

octane number, neural network, QSPR, fuel property prediction, biofuel, gasoline

Other note

Citation