In silico characterization of bacterial chitinase : illuminating its relationship with archaeal and eukaryotic cousins
Loading...
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
Date
2021-12
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Journal of Genetic Engineering and Biotechnology, Volume 19, issue 1
Abstract
Background: Chitin is one of the most abundant biopolymers on Earth, only trailing second after cellulose. The enzyme chitinase is responsible for the degradation of chitin. Chitinases are found to be produced by wide range of organisms ranging from archaea to higher plants. Though chitin is a major component of fungal cell walls and invertebrate exoskeletons, bacterial chitinase can be industrially generated at low cost, in facile downstream processes at high production rate. Microbial chitinases are more stable, active, and economically practicable compared to the plant- and animal-derived enzymes. Results: In the present study, computationally obtained results showed functional characteristics of chitinase with particular emphasis on bacterial chitinase which is fulfilling all the required qualities needed for commercial production. Sixty-two chitinase sequences from four different groups of organisms were collected from the RCSB Protein Data Bank. Considering one suitable exemplary sequence from each group is being compared with others. Primary, secondary, and tertiary structures are determined by in silico models. Different physical parameters, viz., pI, molecular weight, instability index, aliphatic index, GRAVY, and presence of functional motifs, are determined, and a phylogenetic tree has been constructed to elucidate relationships with other groups of organisms. Conclusions: This study provides novel insights into distribution of chitinase among four groups and their characterization. The results represent valuable information toward bacterial chitinase in terms of the catalytic properties and structural features, can be exploited to produce a range of chitin-derived products.Description
Keywords
Chitinase, Phylogenetic relationships, Physical parameters, Structural and functional analysis
Other note
Citation
Dutta, B, Deska, J, Bandopadhyay, R & Shamekh, S 2021, ' In silico characterization of bacterial chitinase : illuminating its relationship with archaeal and eukaryotic cousins ', Journal of Genetic Engineering and Biotechnology, vol. 19, no. 1, 19 . https://doi.org/10.1186/s43141-021-00121-6