Bayesian segmentation of brainstem structures in MRI

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorIglesias, Juan Eugenioen_US
dc.contributor.authorVan Leemput, Koenen_US
dc.contributor.authorBhatt, Priyankaen_US
dc.contributor.authorCasillas, Christenen_US
dc.contributor.authorDutt, Shubiren_US
dc.contributor.authorSchuff, Norberten_US
dc.contributor.authorTruran-Sacrey, Dianaen_US
dc.contributor.authorBoxer, Adam L.en_US
dc.contributor.authorFischl, Bruceen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.departmentDepartment of Neuroscience and Biomedical Engineeringen
dc.date.accessioned2017-04-28T09:52:49Z
dc.date.available2017-04-28T09:52:49Z
dc.date.issued2015en_US
dc.descriptionVK: Lampinen, J.
dc.description.abstractIn this paper we present a method to segment four brainstem structures (midbrain, pons, medulla oblongata and superior cerebellar peduncle) from 3D brain MRI scans. The segmentation method relies on a probabilistic atlas of the brainstem and its neighboring brain structures. To build the atlas, we combined a dataset of 39 scans with already existing manual delineations of the whole brainstem and a dataset of 10 scans in which the brainstem structures were manually labeled with a protocol that was specifically designed for this study. The resulting atlas can be used in a Bayesian framework to segment the brainstem structures in novel scans. Thanks to the generative nature of the scheme, the segmentation method is robust to changes in MRI contrast or acquisition hardware. Using cross validation, we show that the algorithm can segment the structures in previously unseen T1 and FLAIR scans with great accuracy (mean error under 1 mm) and robustness (no failures in 383 scans including 168 AD cases). We also indirectly evaluate the algorithm with a experiment in which we study the atrophy of the brainstem in aging. The results show that, when used simultaneously, the volumes of the midbrain, pons and medulla are significantly more predictive of age than the volume of the entire brainstem, estimated as their sum. The results also demonstrate that the method can detect atrophy patterns in the brainstem structures that have been previously described in the literature. Finally, we demonstrate that the proposed algorithm is able to detect differential effects of AD on the brainstem structures. The method will be implemented as part of the popular neuroimaging package FreeSurfer.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationIglesias, J E, Van Leemput, K, Bhatt, P, Casillas, C, Dutt, S, Schuff, N, Truran-Sacrey, D, Boxer, A L & Fischl, B 2015, ' Bayesian segmentation of brainstem structures in MRI ', NeuroImage, vol. 113, pp. 184-195 . https://doi.org/10.1016/j.neuroimage.2015.02.065en
dc.identifier.doi10.1016/j.neuroimage.2015.02.065en_US
dc.identifier.issn1053-8119
dc.identifier.issn1095-9572
dc.identifier.otherPURE UUID: 1592e4cb-106b-4805-a558-e920f92a4893en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/1592e4cb-106b-4805-a558-e920f92a4893en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/11780632/1_s2.0_S1053811915001895_main.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/25301
dc.identifier.urnURN:NBN:fi:aalto-201704283704
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesNeuroImageen
dc.relation.ispartofseriesVolume 113, pp. 184-195en
dc.rightsopenAccessen
dc.subject.keywordBrainstemen_US
dc.subject.keywordBayesian segmentationen_US
dc.subject.keywordProbabilistic atlasen_US
dc.titleBayesian segmentation of brainstem structures in MRIen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files