Strategic Biddings of a Consumer demand in both DA and Balancing Markets in Response to Renewable Energy Integration
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
15
Series
Electric Power Systems Research, Volume 210
Abstract
This paper proposes strategic biddings for a consumer demand that participates in both the day-ahead and balancing markets. The strategic behavior of the consumer is represented by the bilevel optimization programming with minimization of consumer costs at the upper level (UL) subject to the co-optimization of energy and reserve in the market clearing process at the lower level problem (LL). Using the Karush-Kuhn-Tucker (KKT) optimality constraints to replace the LL problem, the bilevel model is recast into a single-level mathematical program with equilibrium constraints (MPEC). The resulted model is finally formulated as a mixed-integer linear programming (MILP) problem using the exact linearization technique and Fortuny-Amat transformation to replace bilinear terms and the complementarity constraints, respectively. The results demonstrate a reduction in the electricity consumption payment for the strategic consumer and a decline in social welfare.Description
Other note
Citation
Tavakkoli, M, Fattaheian-Dehkordi, S, Pourakbari-Kasmaei, M, Liski, M & Lehtonen, M 2022, 'Strategic Biddings of a Consumer demand in both DA and Balancing Markets in Response to Renewable Energy Integration', Electric Power Systems Research, vol. 210, 108132. https://doi.org/10.1016/j.epsr.2022.108132