Moving towards data-driven decision-making in maintenance
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.advisor | Kubler, Sylvain, Dr., Université de Lorraine, France | |
dc.contributor.author | Madhikermi, Manik | |
dc.contributor.department | Tietotekniikan laitos | fi |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.lab | Adaptive Systems of Intelligent Agents | en |
dc.contributor.school | Perustieteiden korkeakoulu | fi |
dc.contributor.school | School of Science | en |
dc.contributor.supervisor | Främling, Kary, Prof., Aalto University, Department of Computer Science, Finland | |
dc.date.accessioned | 2019-05-23T09:01:15Z | |
dc.date.available | 2019-05-23T09:01:15Z | |
dc.date.defence | 2019-06-10 | |
dc.date.issued | 2019 | |
dc.description.abstract | Traditionally, in the maintenance industry, maintenance efficiency is limited by the capability of the experts making the decision. However, the advancement of digital technologies made it possible to improve the effectiveness and efficiency of maintenance activities by adding insight from the data to expert assessment. The opportunity provided by data for decision making made the companies to shift towards a new type of maintenance strategy called data-driven maintenance. Despite of opportunities, data and analytical tools' companies are still struggling to fully harness data asset to improve maintenance activities because of data-centric challenges. Hence, the main objective of this dissertation is to identify and mitigate those challenges that limit organizational decision-making capabilities to improve maintenance effectiveness. In this dissertation, firstly, quantitative and descriptive analyses of case studies in Finnish Multinational Manufacturing Companies have been carried out to identify key data-centric challenges. The study identified Data Quality, Interoperability, and Data extraction as key challenges. Furthermore, each of the identified challenges have been investigated through one or more original publications. The main results achieved in this dissertation are methods and frameworks to i) assess and compare data quality of maintenance reporting procedure ii) two-level interoperability framework for inter-system interoperability iii) data discovery methodology to extract data for Extract, Transform and Load process. The applicability and validity of each of the proposed methodologies and framework has been validated through one or multiple use cases. For validation, three different tools namely, MRQA Dashboard, Open-messaging Middleware, and Data Model Logger have been developed to tackle each of the identified data-centric challenges. | en |
dc.format.extent | 105 + app. 77 | |
dc.format.mimetype | application/pdf | en |
dc.identifier.isbn | 978-952-60-8582-1 (electronic) | |
dc.identifier.isbn | 978-952-60-8581-4 (printed) | |
dc.identifier.issn | 1799-4942 (electronic) | |
dc.identifier.issn | 1799-4934 (printed) | |
dc.identifier.issn | 1799-4934 (ISSN-L) | |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/38096 | |
dc.identifier.urn | URN:ISBN:978-952-60-8582-1 | |
dc.language.iso | en | en |
dc.opn | Couto Barone, Dante Augusto, Prof., Federal University of Rio Grande do Sul Porto Alegre, Brazil | |
dc.opn | Lamouri, Samir, Prof., ENSAM, Arts et métiers ParisTech., France | |
dc.publisher | Aalto University | en |
dc.publisher | Aalto-yliopisto | fi |
dc.relation.haspart | [Publication 1]: Manik Madhikermi, Andrea Buda, Bhargav Dave, Kary Främling. Key Data Quality Pitfalls for Condition Based Maintenance. In 2017 2nd International Conference on System Reliability and Safety (ICSRS), Milan, Italy, pp. 474-480, Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-201808214639. DOI: 10.1109/ICSRS.2017.8272868 | |
dc.relation.haspart | [Publication 2]: Manik Madhikermi, Sylvain Kubler, Jérémy Robert, Andrea Buda, Kary Främling. Data quality assessment of maintenance reporting procedures. Expert Systems with Applications, 2016, Vol. 63, pp. 145-164, DOI: 10.1016/j.eswa.2016.06.043 | |
dc.relation.haspart | [Publication 3]: Sylvain Kubler, Manik Madhikermi, Andrea Buda, Kary Främling, William Derigent, André Thomas. Towards data exchange interoperability in building lifecycle management. In 2014 IEEE Emerging Technology and Factory Automation conference, Barcelona, Spain, pp. 1-8, DOI: 10.1109/ETFA.2014.7005093 | |
dc.relation.haspart | [Publication 4]: Manik Madhikermi, Narges Yousefnezhad, Kary Främling. Data Exchange Standard for Industrial Internet of Things. In 2018 3rd International Conference on System Reliability and Safety, Barcelona, Spain, pp. 53-61, DOI: 10.1109/ICSRS.2018.8688847 | |
dc.relation.haspart | [Publication 5]: Manik Madhikermi, Narges Yousefnezhad, Kary Främling. Heat Recovery Unit Failure Detection in Air Handling Unit. In IFIP International Conference on Advances in Production Management Systems, Seoul, Korea, pp. 343-350, August 2018. Full text available in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-201810165343. DOI: 10.1007/978-3-319-99707-0_43 | |
dc.relation.haspart | [Publication 6]: Manik Madhikermi, Narges Yousefnezhad, Kary Främling. Data discovery method for Extract-Transform-Load. 2019 5th International Conference on Information Management and Industrial Engineering, Cape Town, South Africa, pp. 174-181, DOI: 10.1109/ICMIMT.2019.8712027 | |
dc.relation.haspart | [Errata file]: Errata of P1 | |
dc.relation.ispartofseries | Aalto University publication series DOCTORAL DISSERTATIONS | en |
dc.relation.ispartofseries | 104/2019 | |
dc.rev | Couto Barone, Dante Augusto, Prof., Federal University of Rio Grande do Sul Porto Alegre, Brazil | |
dc.rev | Lamouri, Samir, Prof., ENSAM, Arts et métiers ParisTech., France | |
dc.subject.keyword | data-driven decision-making | en |
dc.subject.keyword | IoT | en |
dc.subject.keyword | maintenance | en |
dc.subject.keyword | data quality | en |
dc.subject.keyword | interoperability | en |
dc.subject.keyword | data extraction | en |
dc.subject.other | Computer science | en |
dc.title | Moving towards data-driven decision-making in maintenance | en |
dc.type | G5 Artikkeliväitöskirja | fi |
dc.type.dcmitype | text | en |
dc.type.ontasot | Doctoral dissertation (article-based) | en |
dc.type.ontasot | Väitöskirja (artikkeli) | fi |
local.aalto.acrisexportstatus | checked 2019-07-02_1511 | |
local.aalto.archive | yes | |
local.aalto.formfolder | 2019_05_23_klo_10_32 |
Files
Original bundle
1 - 2 of 2
No Thumbnail Available
- Name:
- isbn9789526085821.pdf
- Size:
- 2.4 MB
- Format:
- Adobe Portable Document Format
No Thumbnail Available
- Name:
- Errata_madhikermi_manik_DD_104_2019_Publications_P1.pdf
- Size:
- 96.79 KB
- Format:
- Adobe Portable Document Format
- Description:
- Errata Manik Mahdikermi DD-104/2019 Publication P1