Simulation of Electric Vehicle Charging Stations Load Profiles in Office Buildings Based on Occupancy Data
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Authors
Date
2020-11
Major/Subject
Mcode
Degree programme
Language
en
Pages
16
Series
Energies, Volume 13, issue 21
Abstract
Transportation vehicles are a large contributor of the carbon dioxide emissions to the atmosphere. Electric Vehicles (EVs) are a promising solution to reduce the CO2 emissions which, however, requires the right electric power production mix for the largest impact. The increase in the electric power consumption caused by the EV charging demand could be matched by the growing share of Renewable Energy Sources (RES) in the power production. EVs are becoming a popular sustainable mean of transportation and the expansion of EV units due to the stochastic nature of charging behavior and increasing share of RES creates additional challenges to the stability in the power systems. Modeling of EV charging fleets allows understanding EV charging capacity and demand response (DR) potential of EV in the power systems. This article focuses on modeling of daily EV charging profiles for buildings with various number of chargers and daily events. The article presents a modeling approach based on the charger occupancy data from the local charging sites. The approach allows one to simulate load profiles and to find how many chargers are necessary to suffice the approximate demand of EV charging from the traffic characteristics, such as arrival time, duration of charging, and maximum charging power. Additionally, to better understand the potential impact of demand response, the modeling approach allows one to compare charging profiles, while adjusting the maximum power consumption of chargers.Description
Keywords
electric vehicles, load modeling, load profiling, demand response, load aggregation, IMPLEMENTATION
Other note
Citation
Uimonen, S & Lehtonen, M 2020, ' Simulation of Electric Vehicle Charging Stations Load Profiles in Office Buildings Based on Occupancy Data ', Energies, vol. 13, no. 21, 5700 . https://doi.org/10.3390/en13215700