Experimental investigation and modelling of the nonlinear creep behaviour of additive-manufactured carbon fibre-reinforced polyethylene terephthalate (CF-PET).

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorGebrehiwot, Silas Z.
dc.contributor.authorEspinosa-Leal, Leonardo
dc.contributor.authorLinderbäck, Paula
dc.contributor.authorRemes, Heikki
dc.contributor.departmentSchool common, ENGen
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorMarine and Arctic Technologyen
dc.contributor.organizationSchool common, ENG
dc.contributor.organizationArcada University of Applied Sciences
dc.date.accessioned2024-11-13T07:22:22Z
dc.date.available2024-11-13T07:22:22Z
dc.date.issued2024-10
dc.descriptionPublisher Copyright: © 2024 The Author(s)
dc.description.abstractIn this paper, the nonlinear creep behaviour of additive-manufactured carbon fibre-reinforced polyethylene terephthalate (CF-PET) is characterised using experimental, theoretical and computational methods. The experimental approach investigates the influence of infill orientations on the creep deformation of the material. For the study, samples at 0°, 45○, and 90° infill orientations are produced with 90% infill density using fused filament fabrication (FFF). The infill orientation parameter highly influences the creep behaviour. Increasing the infill orientation from 0° to 90° monotonically improves the creep resistance of the material, which can be explained by orientation of the fibre-matrix reinforcement towards the uniaxial stresses. Surface examinations of creep-ruptured samples via scanning electron microscopy (SEM) reveal that a combination of matrix failure, fibre pull-out, fibre-matrix debonding, inter-layer debonding, and the presence of voids cause the fractures. Based on the experimental data, the primary and secondary creep responses are modelled theoretically and computationally. The theoretical model is based on the dependence of the material's creep on stress and time parameters at the transient and steady state stages. Combined stress and time functions are used to model the creep of the material. Parallelly, two-dimensional (2D) finite element (FE) analyses are made on COMSOL Multiphysics to model the creep computationally. The approach is based on the superposition of Norton's and Garofalo's creep models with predefined time hardening property. The results of the modelling are in good agreement with the experimental findings, showing a maximum of 1.04 % for the theoretical, and 2.9 % for the computational approaches.en
dc.description.versionPeer revieweden
dc.format.extent14
dc.format.mimetypeapplication/pdf
dc.identifier.citationGebrehiwot, S Z, Espinosa-Leal, L, Linderbäck, P & Remes, H 2024, ' Experimental investigation and modelling of the nonlinear creep behaviour of additive-manufactured carbon fibre-reinforced polyethylene terephthalate (CF-PET). ', Composites Part C: Open Access, vol. 15, 100530 . https://doi.org/10.1016/j.jcomc.2024.100530en
dc.identifier.doi10.1016/j.jcomc.2024.100530
dc.identifier.issn2666-6820
dc.identifier.otherPURE UUID: 0ca0eea1-283d-489c-b990-d51c1bcd2e1c
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/0ca0eea1-283d-489c-b990-d51c1bcd2e1c
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85208075996&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/164003634/1-s2.0-S2666682024000999-main.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/131564
dc.identifier.urnURN:NBN:fi:aalto-202411137076
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesComposites Part C: Open Access
dc.relation.ispartofseriesVolume 15
dc.rightsopenAccessen
dc.subject.keywordCreep rate
dc.subject.keywordCreep rupture
dc.subject.keywordCreep strain
dc.subject.keywordFused filament fabrication
dc.subject.keywordNonlinear modelling
dc.titleExperimental investigation and modelling of the nonlinear creep behaviour of additive-manufactured carbon fibre-reinforced polyethylene terephthalate (CF-PET).en
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files