Self-dual double circulant, self-dual double negacirculant and LCD double negacirculant codes over the ring F[]/⟨2-, 2-, ⟩
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Dinh, Hai Q. | |
dc.contributor.author | Yadav, Bhanu Pratap | |
dc.contributor.author | Nguyen, Bac T. | |
dc.contributor.author | Upadhyay, Ashish Kumar | |
dc.contributor.author | Yamaka, Woraphon | |
dc.contributor.department | Kent State University | |
dc.contributor.department | Communications Theory | |
dc.contributor.department | Duy Tan University | |
dc.contributor.department | Banaras Hindu University | |
dc.contributor.department | Chiang Mai University | |
dc.contributor.department | Department of Information and Communications Engineering | en |
dc.date.accessioned | 2023-09-13T06:46:07Z | |
dc.date.available | 2023-09-13T06:46:07Z | |
dc.date.issued | 2023 | |
dc.description | Publisher Copyright: Author | |
dc.description.abstract | In this paper, we investigate self-dual double circulant, and self-dual and linear complementary dual (LCD) double negacirculant codes over a finite ring R = F_q + u F_q + v F_q + uv F_q , where u^2=u , v^2=v , uv=vu and q=p^m. We study the algebraic structure of double circulant codes over R. We provide necessary and sufficient conditions for a double circulant code to be a self-dual code. We give a formula to get the total number of self-dual double circulant codes over the ring R. We compute distance bounds for self-dual double circulant codes over R. In addition, by using a Gray map, we show that the families of self-dual double circulant codes under the Gray map are asymptotically good. Moreover, the algebraic structure of double negacirculant codes and necessary and sufficient conditions for a double negacirculant code to be a self-dual code and to be an LCD code are also given. We determine the total number of self-dual and LCD double negacirculant codes over R. | en |
dc.description.version | Peer reviewed | en |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Dinh , H Q , Yadav , B P , Nguyen , B T , Upadhyay , A K & Yamaka , W 2023 , ' Self-dual double circulant, self-dual double negacirculant and LCD double negacirculant codes over the ring F[]/⟨2-, 2-, ⟩ ' , IEEE Access , vol. 11 , pp. 92898-92912 . https://doi.org/10.1109/ACCESS.2023.3309246 | en |
dc.identifier.doi | 10.1109/ACCESS.2023.3309246 | |
dc.identifier.issn | 2169-3536 | |
dc.identifier.other | PURE UUID: 23122e78-1391-4388-bc94-73013d90b350 | |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/23122e78-1391-4388-bc94-73013d90b350 | |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85169688106&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/121345569/10231345.pdf | |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/123453 | |
dc.identifier.urn | URN:NBN:fi:aalto-202309135813 | |
dc.language.iso | en | en |
dc.publisher | IEEE | |
dc.relation.ispartofseries | IEEE Access | en |
dc.rights | openAccess | en |
dc.subject.keyword | Artin conjecture | |
dc.subject.keyword | Codes | |
dc.subject.keyword | Double circulant codes | |
dc.subject.keyword | double negacirculant codes | |
dc.subject.keyword | Dual band | |
dc.subject.keyword | Finite element analysis | |
dc.subject.keyword | Gray map | |
dc.subject.keyword | Hamming weight | |
dc.subject.keyword | LCD codes | |
dc.subject.keyword | Linear codes | |
dc.subject.keyword | Liquid crystal displays | |
dc.subject.keyword | Object recognition | |
dc.subject.keyword | self-dual codes | |
dc.subject.keyword | Structural rings | |
dc.title | Self-dual double circulant, self-dual double negacirculant and LCD double negacirculant codes over the ring F[]/⟨2-, 2-, ⟩ | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |