Direct Band Gap Semiconductors with Two- and Three-Dimensional Triel-Phosphide Frameworks (Triel=Al, Ga, In)
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
10
Series
Chemistry - A European Journal, Volume 30, issue 18
Abstract
Recently, several ternary phosphidotrielates and -tetrelates have been investigated with respect to their very good ionic conductivity, while less focus was pointed towards their electronic structures. Here, we report on a novel series of compounds, in which several members possess direct band gaps. We investigated the known compounds Li3AlP2, Li3GaP2, Li3InP2, and Na3InP2 and describe the synthesis and the crystal structure of novel Na3In2P3. For all mentioned phosphidotrielates reflectance UV-Vis measurements reveal direct band gaps in the visible light region with decreasing band gaps in the series: Li3AlP2 (2.45 eV), Li3GaP2 (2.18 eV), Li3InP2 (1.99 eV), Na3InP2 (1.37 eV), and Na3In2P3 (1.27 eV). All direct band gaps are confirmed by quantum chemical calculations. The unexpected property occurs despite different structure types. As a common feature all compounds contain EP4 tetrahedra, which share exclusively vertices for E=In and vertices as well as edges for E=Al and Ga. The structure of the novel Na3In2P3 is built up by a polyanionic framework of six-membered rings of corner-sharing InP4 tetrahedra. As a result, the newly designed semiconductors with direct band gaps are suitable for optoelectronic applications, and they can provide significant guidance for the design of new functional semiconductors.Description
Publisher Copyright: © 2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
Keywords
Other note
Citation
Restle, T M F, Zeitz, S, Stanley, P M, Karttunen, A J, Meyer, J, Raudaschl-Sieber, G, Klein, W & Fässler, T F 2024, 'Direct Band Gap Semiconductors with Two- and Three-Dimensional Triel-Phosphide Frameworks (Triel=Al, Ga, In)', Chemistry - A European Journal, vol. 30, no. 18, e202304097. https://doi.org/10.1002/chem.202304097