EPIC-TRACE: predicting TCR binding to unseen epitopes using attention and contextualized embeddings

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorKorpela, Danien_US
dc.contributor.authorJokinen, Emmien_US
dc.contributor.authorDumitrescu, Alexandruen_US
dc.contributor.authorHuuhtanen, Janien_US
dc.contributor.authorMustjoki, Satuen_US
dc.contributor.authorLähdesmäki, Harrien_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProfessorship Lähdesmäki Harrien
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Computational Life Sciences (CSLife) - Research areaen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML) - Research areaen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.organizationDepartment of Computer Scienceen_US
dc.contributor.organizationUniversity of Helsinkien_US
dc.date.accessioned2024-01-17T08:17:53Z
dc.date.available2024-01-17T08:17:53Z
dc.date.issued2023-12-09en_US
dc.description.abstractMotivation T cells play an essential role in adaptive immune system to fight pathogens and cancer but may also give rise to autoimmune diseases. The recognition of a peptide-MHC (pMHC) complex by a T cell receptor (TCR) is required to elicit an immune response. Many machine learning models have been developed to predict the binding, but generalizing predictions to pMHCs outside the training data remains challenging. Results We have developed a new machine learning model that utilizes information about the TCR from both α and β chains, epitope sequence, and MHC. Our method uses ProtBERT embeddings for the amino acid sequences of both chains and the epitope, as well as convolution and multi-head attention architectures. We show the importance of each input feature as well as the benefit of including epitopes with only a few TCRs to the training data. We evaluate our model on existing databases and show that it compares favorably against other state-of-the-art models.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationKorpela, D, Jokinen, E, Dumitrescu, A, Huuhtanen, J, Mustjoki, S & Lähdesmäki, H 2023, ' EPIC-TRACE: predicting TCR binding to unseen epitopes using attention and contextualized embeddings ', Bioinformatics, vol. 39, no. 12, btad743 . https://doi.org/10.1093/bioinformatics/btad743en
dc.identifier.doi10.1093/bioinformatics/btad743en_US
dc.identifier.issn1367-4803
dc.identifier.issn1367-4811
dc.identifier.otherPURE UUID: 49dfe7e9-14ec-4f54-ae28-2c7a221565b4en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/49dfe7e9-14ec-4f54-ae28-2c7a221565b4en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85181085700&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/133656279/SCI_Korpela_etal_Bioinformatics_2023.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/125802
dc.identifier.urnURN:NBN:fi:aalto-202401171477
dc.language.isoenen
dc.publisherOxford University Press
dc.relation.ispartofseriesBioinformaticsen
dc.relation.ispartofseriesVolume 39, issue 12en
dc.rightsopenAccessen
dc.titleEPIC-TRACE: predicting TCR binding to unseen epitopes using attention and contextualized embeddingsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files