EPIC-TRACE: predicting TCR binding to unseen epitopes using attention and contextualized embeddings
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Korpela, Dani | en_US |
dc.contributor.author | Jokinen, Emmi | en_US |
dc.contributor.author | Dumitrescu, Alexandru | en_US |
dc.contributor.author | Huuhtanen, Jani | en_US |
dc.contributor.author | Mustjoki, Satu | en_US |
dc.contributor.author | Lähdesmäki, Harri | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.groupauthor | Professorship Lähdesmäki Harri | en |
dc.contributor.groupauthor | Computer Science Professors | en |
dc.contributor.groupauthor | Computer Science - Computational Life Sciences (CSLife) - Research area | en |
dc.contributor.groupauthor | Computer Science - Artificial Intelligence and Machine Learning (AIML) - Research area | en |
dc.contributor.groupauthor | Helsinki Institute for Information Technology (HIIT) | en |
dc.contributor.organization | Department of Computer Science | en_US |
dc.contributor.organization | University of Helsinki | en_US |
dc.date.accessioned | 2024-01-17T08:17:53Z | |
dc.date.available | 2024-01-17T08:17:53Z | |
dc.date.issued | 2023-12-09 | en_US |
dc.description.abstract | Motivation T cells play an essential role in adaptive immune system to fight pathogens and cancer but may also give rise to autoimmune diseases. The recognition of a peptide-MHC (pMHC) complex by a T cell receptor (TCR) is required to elicit an immune response. Many machine learning models have been developed to predict the binding, but generalizing predictions to pMHCs outside the training data remains challenging. Results We have developed a new machine learning model that utilizes information about the TCR from both α and β chains, epitope sequence, and MHC. Our method uses ProtBERT embeddings for the amino acid sequences of both chains and the epitope, as well as convolution and multi-head attention architectures. We show the importance of each input feature as well as the benefit of including epitopes with only a few TCRs to the training data. We evaluate our model on existing databases and show that it compares favorably against other state-of-the-art models. | en |
dc.description.version | Peer reviewed | en |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Korpela, D, Jokinen, E, Dumitrescu, A, Huuhtanen, J, Mustjoki, S & Lähdesmäki, H 2023, ' EPIC-TRACE: predicting TCR binding to unseen epitopes using attention and contextualized embeddings ', Bioinformatics, vol. 39, no. 12, btad743 . https://doi.org/10.1093/bioinformatics/btad743 | en |
dc.identifier.doi | 10.1093/bioinformatics/btad743 | en_US |
dc.identifier.issn | 1367-4803 | |
dc.identifier.issn | 1367-4811 | |
dc.identifier.other | PURE UUID: 49dfe7e9-14ec-4f54-ae28-2c7a221565b4 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/49dfe7e9-14ec-4f54-ae28-2c7a221565b4 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85181085700&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/133656279/SCI_Korpela_etal_Bioinformatics_2023.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/125802 | |
dc.identifier.urn | URN:NBN:fi:aalto-202401171477 | |
dc.language.iso | en | en |
dc.publisher | Oxford University Press | |
dc.relation.ispartofseries | Bioinformatics | en |
dc.relation.ispartofseries | Volume 39, issue 12 | en |
dc.rights | openAccess | en |
dc.title | EPIC-TRACE: predicting TCR binding to unseen epitopes using attention and contextualized embeddings | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |