Acid-Treated RuO2/Co3O4 Nanostructures for Acidic Oxygen Evolution Reaction Electrocatalysis

Loading...
Thumbnail Image

Access rights

restrictedAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Major/Subject

Mcode

Degree programme

Language

en

Pages

8

Series

ACS Applied Nano Materials, Volume 7, issue 8, pp. 9244-9251

Abstract

RuO2 is widely used as an acidic electrocatalyst to achieve high catalytic activity, but the severe leaching and scarcity of the Ru element restrict application on a large scale. Strategies such as designing nanostructures and adjusting metals’ electronic properties to regulate the adsorption of reaction intermediates can be used for the design and preparation of catalysts. Herein, we designed an acid-treated RuO2/Co3O4 nanostructure electrocatalyst with low Ru content and an intimate heterogeneous interface to disrupt the trade-off relationship between stability and activity. The resulting acid-treated RuO2/Co3O4 displayed an overpotential of 152 mV in a 0.5 M H2SO4 electrolyte, greatly exceeding that of commercial RuO2 (221 mV). Despite continuous operation for 150 h, it still exhibited good stability with a degradation rate of 0.67 mV·h-1. Multiple characterization analyses revealed that an electron transfer occurs from Ruoct to Cooct(III) sites through the mutual O atoms in acid-treated RuO2/Co3O4, which is further strengthened by the presence of oxygen vacancies. The oxygen vacancy and heterogeneous interface synergistically regulate electronic dispersion, optimize the adsorption of the oxygen intermediates (*OOH), and improve the reaction kinetics of the oxygen evolution reaction (OER). This work brings to light the significance of oxygen vacancies for modulating the electronic structure of RuO2 nanoparticles and enhancing stability on Co3O4 support, thus highlighting the use of nanostructure and interfacial engineering to achieve better acidic OER catalyst design.

Description

| openaire: EC/HE/101070976/EU//EPOCH

Other note

Citation

Huang, X, Lee, C, Li, Y, Xu, J & Liu, D 2024, 'Acid-Treated RuO 2 /Co 3 O 4 Nanostructures for Acidic Oxygen Evolution Reaction Electrocatalysis', ACS Applied Nano Materials, vol. 7, no. 8, pp. 9244-9251. https://doi.org/10.1021/acsanm.4c00742