Enhanced Weighted K-nearest Neighbor Positioning

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLi, Xinzeen_US
dc.contributor.authorAl-Tous, Hananen_US
dc.contributor.authorHajri, Salah Eddineen_US
dc.contributor.authorTirkkonen, Olaven_US
dc.contributor.departmentDepartment of Information and Communications Engineeringen
dc.contributor.groupauthorCommunications Theoryen
dc.contributor.organizationHuawei Technologies Co., Ltd.en_US
dc.date.accessioned2024-10-23T06:11:28Z
dc.date.available2024-10-23T06:11:28Z
dc.date.issued2024en_US
dc.description.abstractWe consider fingerprinting-based localization in highly cluttered multipath environments with non-line-of-sight conditions, typical of indoor scenarios. Channel state information (CSI) from multiple Base Stations (BSs) is used to construct a fingerprint. We investigate the physical geometry of the k nearest neighbors found by feature distances, as well as possible enhancements to boost achievable positioning accuracy. We observe that the performance of Weighted K-Nearest Neighbor (WKNN) regression depends on the relation between the true position and its k nearest feature neighbors. Better accuracy is achieved when the true position is inside the convex hull of the k nearest neighbors, otherwise localization performance degrades. Consequently, we devise a neighborhood selection algorithm to increase the possibility of a point being inside the convex hull of the k nearest feature neighbors. WKNN localization is also affected by the weighting function used. To further improve performance, we consider a general framework to find the optimum weighting function, utilizing Laguerre polynomials. We benchmark performance against WKNN with exponential weight and deep neural network based localization. Simulation results show that the optimum weighting function with neighbor selection outperforms the benchmark algorithms.en
dc.description.versionPeer revieweden
dc.format.extent6
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLi, X, Al-Tous, H, Hajri, S E & Tirkkonen, O 2024, Enhanced Weighted K-nearest Neighbor Positioning . in 2024 IEEE 99th Vehicular Technology Conference, VTC2024-Spring 2024 - Proceedings . IEEE Vehicular Technology Conference, IEEE, IEEE Vehicular Technology Conference, Singapore, Singapore, 24/06/2024 . https://doi.org/10.1109/VTC2024-Spring62846.2024.10683493en
dc.identifier.doi10.1109/VTC2024-Spring62846.2024.10683493en_US
dc.identifier.isbn979-8-3503-8741-4
dc.identifier.otherPURE UUID: c1a834b0-8541-4d97-9c5c-e87c0d6dcb5fen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/c1a834b0-8541-4d97-9c5c-e87c0d6dcb5fen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85206209114&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/142435595/2024002494.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/131358
dc.identifier.urnURN:NBN:fi:aalto-202410236878
dc.language.isoenen
dc.relation.ispartofProceedings of the IEEE Vehicular Technology Conference
dc.relation.ispartofIEEE Vehicular Technology Conferenceen
dc.rightsopenAccessen
dc.subject.keywordChannel state informationen_US
dc.subject.keywordfingerprint localizationen_US
dc.subject.keywordk-nearest-neighbor regressionen_US
dc.subject.keywordLaguerre polynomialsen_US
dc.subject.keywordnon-line-of-sight communicationen_US
dc.titleEnhanced Weighted K-nearest Neighbor Positioningen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files