Real-time 3D Target Inference via Biomechanical Simulation

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorMoon, Hee-Seungen_US
dc.contributor.authorLiao, Yi-Chien_US
dc.contributor.authorLi, Chenyuen_US
dc.contributor.authorLee, Byungjooen_US
dc.contributor.authorOulasvirta, Anttien_US
dc.contributor.departmentDepartment of Information and Communications Engineeringen
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.editorMueller, Florian Floyden_US
dc.contributor.editorKyburz, Pennyen_US
dc.contributor.editorWilliamson, Julie R.en_US
dc.contributor.editorSas, Corinaen_US
dc.contributor.editorWilson, Max L.en_US
dc.contributor.editorToups Dugas, Phoebeen_US
dc.contributor.editorShklovski, Irinaen_US
dc.contributor.groupauthorUser Interfacesen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.date.accessioned2024-05-22T05:49:02Z
dc.date.available2024-05-22T05:49:02Z
dc.date.issued2024-05-11en_US
dc.description.abstractSelecting a target in a 3D environment is often challenging, especially with small/distant targets or when sensor noise is high. To facilitate selection, target-inference methods must be accurate, fast, and account for noise and motor variability. However, traditional data-free approaches fall short in accuracy since they ignore variability. While data-driven solutions achieve higher accuracy, they rely on extensive human datasets so prove costly, time-consuming, and transfer poorly. In this paper, we propose a novel approach that leverages biomechanical simulation to produce synthetic motion data, capturing a variety of movement-related factors, such as limb configurations and motor noise. Then, an inference model is trained with only the simulated data. Our simulation-based approach improves transfer and lowers cost; variety-rich data can be produced in large quantities for different scenarios. We empirically demonstrate that our method matches the accuracy of human-data-driven approaches using data from seven users. When deployed, the method accurately infers intended targets in challenging 3D pointing conditions within 5–10 milliseconds, reducing users’ target-selection error by 71% and completion time by 35%.en
dc.description.versionPeer revieweden
dc.format.extent18
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationMoon, H-S, Liao, Y-C, Li, C, Lee, B & Oulasvirta, A 2024, Real-time 3D Target Inference via Biomechanical Simulation. in F F Mueller, P Kyburz, J R Williamson, C Sas, M L Wilson, P Toups Dugas & I Shklovski (eds), CHI '24: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems., 719, ACM, ACM SIGCHI Annual Conference on Human Factors in Computing Systems, Honolulu, Hawaii, United States, 11/05/2024. https://doi.org/10.1145/3613904.3642131en
dc.identifier.doi10.1145/3613904.3642131en_US
dc.identifier.isbn979-8-4007-0330-0
dc.identifier.otherPURE UUID: 2e81ad38-e0e0-42c3-94cd-52dd9039d000en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/2e81ad38-e0e0-42c3-94cd-52dd9039d000en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85194813291&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/146012443/3613904.3642131.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/127895
dc.identifier.urnURN:NBN:fi:aalto-202405223500
dc.language.isoenen
dc.relation.ispartofACM SIGCHI Annual Conference on Human Factors in Computing Systemsen
dc.relation.ispartofseriesCHI '24: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systemsen
dc.rightsopenAccessen
dc.subject.keywordtarget inferenceen_US
dc.subject.keywordTarget selectionen_US
dc.subject.keywordbiomechanical simulationen_US
dc.subject.keywordamortized inferenceen_US
dc.titleReal-time 3D Target Inference via Biomechanical Simulationen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files