Real-time 3D Target Inference via Biomechanical Simulation
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Moon, Hee-Seung | en_US |
dc.contributor.author | Liao, Yi-Chi | en_US |
dc.contributor.author | Li, Chenyu | en_US |
dc.contributor.author | Lee, Byungjoo | en_US |
dc.contributor.author | Oulasvirta, Antti | en_US |
dc.contributor.department | Department of Information and Communications Engineering | en |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.editor | Mueller, Florian Floyd | en_US |
dc.contributor.editor | Kyburz, Penny | en_US |
dc.contributor.editor | Williamson, Julie R. | en_US |
dc.contributor.editor | Sas, Corina | en_US |
dc.contributor.editor | Wilson, Max L. | en_US |
dc.contributor.editor | Toups Dugas, Phoebe | en_US |
dc.contributor.editor | Shklovski, Irina | en_US |
dc.contributor.groupauthor | User Interfaces | en |
dc.contributor.groupauthor | Helsinki Institute for Information Technology (HIIT) | en |
dc.date.accessioned | 2024-05-22T05:49:02Z | |
dc.date.available | 2024-05-22T05:49:02Z | |
dc.date.issued | 2024-05-11 | en_US |
dc.description.abstract | Selecting a target in a 3D environment is often challenging, especially with small/distant targets or when sensor noise is high. To facilitate selection, target-inference methods must be accurate, fast, and account for noise and motor variability. However, traditional data-free approaches fall short in accuracy since they ignore variability. While data-driven solutions achieve higher accuracy, they rely on extensive human datasets so prove costly, time-consuming, and transfer poorly. In this paper, we propose a novel approach that leverages biomechanical simulation to produce synthetic motion data, capturing a variety of movement-related factors, such as limb configurations and motor noise. Then, an inference model is trained with only the simulated data. Our simulation-based approach improves transfer and lowers cost; variety-rich data can be produced in large quantities for different scenarios. We empirically demonstrate that our method matches the accuracy of human-data-driven approaches using data from seven users. When deployed, the method accurately infers intended targets in challenging 3D pointing conditions within 5–10 milliseconds, reducing users’ target-selection error by 71% and completion time by 35%. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 18 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Moon, H-S, Liao, Y-C, Li, C, Lee, B & Oulasvirta, A 2024, Real-time 3D Target Inference via Biomechanical Simulation. in F F Mueller, P Kyburz, J R Williamson, C Sas, M L Wilson, P Toups Dugas & I Shklovski (eds), CHI '24: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems., 719, ACM, ACM SIGCHI Annual Conference on Human Factors in Computing Systems, Honolulu, Hawaii, United States, 11/05/2024. https://doi.org/10.1145/3613904.3642131 | en |
dc.identifier.doi | 10.1145/3613904.3642131 | en_US |
dc.identifier.isbn | 979-8-4007-0330-0 | |
dc.identifier.other | PURE UUID: 2e81ad38-e0e0-42c3-94cd-52dd9039d000 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/2e81ad38-e0e0-42c3-94cd-52dd9039d000 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85194813291&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/146012443/3613904.3642131.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/127895 | |
dc.identifier.urn | URN:NBN:fi:aalto-202405223500 | |
dc.language.iso | en | en |
dc.relation.ispartof | ACM SIGCHI Annual Conference on Human Factors in Computing Systems | en |
dc.relation.ispartofseries | CHI '24: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems | en |
dc.rights | openAccess | en |
dc.subject.keyword | target inference | en_US |
dc.subject.keyword | Target selection | en_US |
dc.subject.keyword | biomechanical simulation | en_US |
dc.subject.keyword | amortized inference | en_US |
dc.title | Real-time 3D Target Inference via Biomechanical Simulation | en |
dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
dc.type.version | publishedVersion |