Real-time 3D Target Inference via Biomechanical Simulation
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A4 Artikkeli konferenssijulkaisussa
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2024-05-11
Major/Subject
Mcode
Degree programme
Language
en
Pages
18
Series
CHI '24: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems
Abstract
Selecting a target in a 3D environment is often challenging, especially with small/distant targets or when sensor noise is high. To facilitate selection, target-inference methods must be accurate, fast, and account for noise and motor variability. However, traditional data-free approaches fall short in accuracy since they ignore variability. While data-driven solutions achieve higher accuracy, they rely on extensive human datasets so prove costly, time-consuming, and transfer poorly. In this paper, we propose a novel approach that leverages biomechanical simulation to produce synthetic motion data, capturing a variety of movement-related factors, such as limb configurations and motor noise. Then, an inference model is trained with only the simulated data. Our simulation-based approach improves transfer and lowers cost; variety-rich data can be produced in large quantities for different scenarios. We empirically demonstrate that our method matches the accuracy of human-data-driven approaches using data from seven users. When deployed, the method accurately infers intended targets in challenging 3D pointing conditions within 5–10 milliseconds, reducing users’ target-selection error by 71% and completion time by 35%.Description
Keywords
target inference, Target selection, biomechanical simulation, amortized inference
Other note
Citation
Moon, H-S, Liao, Y-C, Li, C, Lee, B & Oulasvirta, A 2024, Real-time 3D Target Inference via Biomechanical Simulation . in F F Mueller, P Kyburz, J R Williamson, C Sas, M L Wilson, P Toups Dugas & I Shklovski (eds), CHI '24: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems ., 719, ACM, ACM SIGCHI Annual Conference on Human Factors in Computing Systems, Honolulu, Hawaii, United States, 11/05/2024 . https://doi.org/10.1145/3613904.3642131