DepNet: An automated industrial intelligent system using deep learning for video-based depression analysis

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHe, Langen_US
dc.contributor.authorGuo, Chenguangen_US
dc.contributor.authorTiwari, Prayagen_US
dc.contributor.authorSu, Ruien_US
dc.contributor.authorPandey, Hari Mohanen_US
dc.contributor.authorDang, Weien_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProfessorship Marttinen P.en
dc.contributor.organizationXi'an University of Posts and Telecommunicationsen_US
dc.contributor.organizationNorthwestern Polytechnical Universityen_US
dc.contributor.organizationNorthwest Universityen_US
dc.contributor.organizationEdge Hill Universityen_US
dc.contributor.organizationXi'an Mental Health Centeren_US
dc.date.accessioned2021-11-01T08:38:03Z
dc.date.available2021-11-01T08:38:03Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2022-10-06en_US
dc.date.issued2022-07en_US
dc.description| openaire: EC/H2020/101016775/EU//INTERVENE Funding Information: This study is supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 20JG030), the Special Construction Fund for Key Disciplines of Shaanxi Provincial Higher Education. This study was supported by the Academy of Finland (grants 336033 and 315896), Business Finland (grant 884/31/2018), and EU H2020 (grant 101016775). Publisher Copyright: © 2021 Wiley Periodicals LLC
dc.description.abstractAs a common mental disorder, depression has attracted many researchers from affective computing field to estimate the depression severity. However, existing approaches based on Deep Learning (DL) are mainly focused on single facial image without considering the sequence information for predicting the depression scale. In this paper, an integrated framework, termed DepNet, for automatic diagnosis of depression that adopts facial images sequence from videos is proposed. Specifically, several pretrained models are adopted to represent the low-level features, and Feature Aggregation Module is proposed to capture the high-level characteristic information for depression analysis. More importantly, the discriminative characteristic of depression on faces can be mined to assist the clinicians to diagnose the severity of the depressed subjects. Multiscale experiments carried out on AVEC2013 and AVEC2014 databases have shown the excellent performance of the intelligent approach. The root mean-square error between the predicted values and the Beck Depression Inventory-II scores is 9.17 and 9.01 on the two databases, respectively, which are lower than those of the state-of-the-art video-based depression recognition methods.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationHe, L, Guo, C, Tiwari, P, Su, R, Pandey, H M & Dang, W 2022, ' DepNet : An automated industrial intelligent system using deep learning for video-based depression analysis ', International Journal of Intelligent Systems, vol. 37, no. 7, pp. 3815-3835 . https://doi.org/10.1002/int.22704en
dc.identifier.doi10.1002/int.22704en_US
dc.identifier.issn0884-8173
dc.identifier.issn1098-111X
dc.identifier.otherPURE UUID: ced038d6-4691-4c78-a103-043e35b8e75een_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/ced038d6-4691-4c78-a103-043e35b8e75een_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85116384535&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/74502953/He_DepNet.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/110744
dc.identifier.urnURN:NBN:fi:aalto-202111019919
dc.language.isoenen
dc.publisherJohn Wiley and Sons Ltd
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/101016775/EU//INTERVENE Funding Information: This study is supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 20JG030), the Special Construction Fund for Key Disciplines of Shaanxi Provincial Higher Education. This study was supported by the Academy of Finland (grants 336033 and 315896), Business Finland (grant 884/31/2018), and EU H2020 (grant 101016775). Publisher Copyright: © 2021 Wiley Periodicals LLCen_US
dc.relation.ispartofseriesInternational Journal of Intelligent Systemsen
dc.rightsopenAccessen
dc.subject.keyworddeep learningen_US
dc.subject.keyworddepressionen_US
dc.subject.keywordfeature aggregation moduleen_US
dc.subject.keywordindustrial intelligent systemen_US
dc.subject.keywordpattern recognitionen_US
dc.titleDepNet: An automated industrial intelligent system using deep learning for video-based depression analysisen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi

Files